平成29年度 デブリ取出時の未臨界確保方策

デブリ形態に応じた 適切な臨界防止方策の検討

東工大廃止措置フォーラム 2018年1月10日

東京都市大学 工学部 原子力安全工学科 高木直行 竹澤宏樹

- 再臨界防止策1 (非溶解性中性子吸収材)
- 再臨界防止策2 (溶解性中性子吸収材)
- 再臨界防止策3 (減速材排除&中性子吸収材)

本年度の検討計画

- 様々な組成、形態のデブリ取り出し作業にあたっての必要十分な未臨界度 を設定し、それを確保するための方策を検討する。
- デブリ状況に応じた中性子吸収材仕様やその必要量の評価、取り出し工法 上の工夫等について検討する。

- 取出し工法の主概念
 気中横アクセス工法
 水の存在
 - ・完全気中ではない
 →水中でデブリ取出し作
 業を行う可能性あり。

水中に浮遊するデブリ微粒子の臨界性

粉末状デブリの粒子直径の検討

Vm/Vf:3.0の条件下、デブリ粒子直径30.0 μ m以下でHomoとHetero一致
 →非均質効果が生じる最小粒子直径: 30.0 μ m

定置型再臨界防止策の概念

浮遊型再臨界防止策の概念

燃料デブリ取出し作業効率の低下

- 2つのアルミニウム製カプセルを想定
 - ① 中空カプセル
 - ② Gdコーティングカプセル
 - パラメータ
 - カプセル半径
 - カプセルピッチ

- Al Gd 中空 中空
- ①中空カプセル
 - ②Gdカプセル

- ガドリニウムコーティング厚さとカプセルAI厚さ(浮力≳重力)
- 未臨界判定条件:k_{eff}≤0.95
- 解析コード
 - 連続エネルギー中性子輸送モンテカルロ計算コードMVP2.0
- 核データ
 - JENDL-4.0

概念仕様検討のためのMVP解析モデル

デブリ組成

- 床堆積デブリ
 - 事故時の平均燃焼度(代表値:1F3 21.8GWd/t)
 - 福島第一原子力発電所の燃料組成評価(JAEA-Data/Code 2012-018)
 - 構造材含む。
 - 空隙割合:約20vol% (TMI-2測定値) への水混入を想定
 - 燃料デブリと水は均質混合
 - 水環境でのk_{eff}:約0.8(推定値)に設定
 - k_{inf}≒0.85
- 水中に浮遊する掘削デブリ
 - 事故時の平均燃焼度+構造材+水(最適減速条件 H/U≒11)
 - k_{inf}≒1.2

1) 中空カプセルの再臨界防止効果

カプセル使用前後でのk_{eff} ≒ 0.95となるデブリ取出し体積の比較結果

2) Gdコーティングカプセルの再臨界防止効果

直径	10cm
AI厚さ	約0.68cm
Gd厚さ	100μ m
個数	43=64個
ギャップ	10cm

直径	20cm
AI厚さ	約1.39cm
Gd厚さ	100μ m
個数	43=64個
ギャップ	10cm

14

まとめ

- 中空AIカプセルの再臨界防止効果
 - 直径20cmのカプセルを10cm間隔で配置→浮遊デブリ最小臨界体積比V'/V_o:約1.7倍
 - 水排除による中性子減速の抑制
- Gdコーティング中空AIカプセルの再臨界防止効果
 - Gdコーティング:100µmの場合
 - 直径10cmのカプセルを10cm間隔で配置→ V'/V。:約2倍
 - 直径20cmのカプセルを10cm間隔で配置→ V'/V。: 約2.6倍
- ・メリット
 - 炉水ヘホウ酸を投入することなく中性子吸収材を炉内に配置
 - 冷却水が止水されなくても臨界を抑制
- 課題
 - 燃料デブリ取出し作業機器の可動範囲を制限
 - カプセル間隔の維持

