TOKYO INSTITUTE OF TECHNOLOGY

金属イオンを含む亜臨界水による汚染土壌からのCs回収 ーー水熱条件下での粘土鉱物からのCs脱離促進一一

東京工業大学科学技術創成研究院 原子燃料サイクル研究ユニット 〇 竹下 健二、Xiang-Biao Yin

Cs Adsorption on Clay Minerals in Contaminated Soil

Cs adsorption in soil and distribution on clay particles

Cs is selectively sorbed by **vermiculite-like clay minerals** and fixed on various binding sites such as **planar/frayed edge/interlayer sites**.

Hiroki Mukai, etc. *Environ. Sci. Technology.* 2014, 48, 13053-13059. James P. Mckinley, etc. *Environ. Sci. Technology.* 2004, 38, 1017-1023. Kenji Tamura, etc. *Environ. Sci. Technology.* 2014, 48, 5808-5815.

Recent studies about Cs removal from clay/soil

Research Groups	Year	Clay/soil	Extraction Agent	Condition	Removal Ratio
K. Morimoto, et al.	2012	Vermiculite	$3 \mathrm{M} \mathrm{Mg}^{2+}$	25°C	70~90%
H. Mukai, et al.	2015	Fukushima biotite	1M NH ₄ ⁺ , Cs ⁺ , Mg ²⁺ , 0 1M H ⁺	25°C	Mg ²⁺ :58 % NH ₄ +:5.1%
M. Yanaga, et al.	2015	Soil	2M K+	25°C	75%
K. Murota, et al.	2016	Soil	0.001~0.1M K ⁺	25°C, 140d	60%
L. Dzene, et al.	2015	Vermiculite	$1 \mathrm{M} \mathrm{NH_4^+}$	25°C	30%
D. Parajuli, et al.	2015	Soil	0 5M H+	95~200°C	50~95%
C. Liu, et al.	2003	Sediments	3M Na ⁺)K ⁺ , Rb ⁺ , 0.5M	25°C,134d	27~80%
N. Kozai, et al.	2012	יי ו ו יד	¹ M NH ₄ ⁺ ,1M H ₂ SO ₄	25°C	40%
A. De Koning, et al.	2004	Sublimation	$M NH_4^+$	25°C	56%
C. Willms, et al.	2004		Alkylammonium salt	25°C	45%
I. Shimoyama, et al.	2014	Vermiculite	Mixed NaCl-CaCl ₂	620~800°C	40% (3min)

Problems/under discussion

- 1. Cs was **poorly and partially** removed 2. **Mono/divalent ions** have varied roles
- 3. High ion strength/temp were used

Pursuing Excellence

ΤΟΚΊ

4. **Desorption kinetics** were very slow

Objectives

 ✓ To clarify Cs sorption behavior on clays
✓ To prepare samples similar with Cs simulated soil

Frayed edge site (10.7 Å) ✓ To improve the Cs desorption ratio.
✓ To clarify the mechanism of Cs desorption.

Characterizations of used Sample - Vermiculitized Biotite

✓ Structure formula is $(Si_{3.14}Al_{0.86})O_{10}(Al_{0.18}Ti_{0.06}Fe_{0.15}Mg_{2.53})(OH)_2(K_{0.48}Ca_{0.04})$. ✓ VB occurs interstratificated structure with Mg-layers and K-layers. 6

Cs Adsorption Experiment

Cs Adsorption on VB

Usage of Cs Saturated VB as Contaminated Soil

Hydrothermal Treatment (HTT) using Subcritical Water

Ionic product of water becomes larger in subcritical state under high temperature (200-280°C) and high pressure (3-4 MPa).

$$H = H = H = H = H$$

Specific Chemical Properties of Subcritical Water

1 High-speed Hydrolysis Effect

→ Cs adsorbed in organic materials can be recovered to water phase by the decomposition of organic materials.

② High-speed Ion Exchange Effect

→ Cs adsorbed in inorganic materials can be recovered to aqueous phase by promoted ion exchange with various cations in subcritical water.

Cs Desorption by Hydrothermal Treatment (HTT)

11

Enhanced Cs desorption by HTT with M²⁺ Cation

- ✓ Cs is still rarely desorbed by monovalent cations.
- ✓ High temperature greatly enhances the Cs desorption by **divalent cations**.
- ✓ XRD results confirms that Mg²⁺ indeed substitutes Cs⁺ from its collapsed interlayer.
 ✓ Mg²⁺/Ca²⁺ expands the collapsed interlayer.

Cs Desorption from Cs-VB at Varied Temp

Pursuing Excellence

TOKYO INSTITUTE OF TECHNOLOGY 13

Cs Desorption from Cs-VB by Mg²⁺ at different Conc.

14

Cs Desorption by HTT with Mg²⁺

- ✓ After HTT at 150 °C, partial Cs in center area is not removed.
- ✓ After HTT at 250 °C, all Cs in both edge and center is removed.
- ✓ Mg²⁺ diffuses into collapsed interlayers from near-edge to interior central region with increase of treating temperature.

Enhanced Cs Desorption by HTT with M³⁺ Cations

Cs Desorption by HTT with Al³⁺

Cs Desorption by HTT with Al³⁺

Cs Desorption for Actual Contaminated Soil

Radioactivity: 15,500 Bq/kg

HTT: 0.5g/50ml, 30 min

- ✓ Actual contaminated soil is sampled near a gutter inlet in Tokaimura, Ibaraki Prefecture.
- XRD confirms the existence of weathered micaceous clay in soil.

Cs Desorption from Radioactive Fukushima Soil

Pursuina Excellence

✓ HTT with 0.5 M Mg²⁺ at 60 °C is not useful for Cs desorption.
✓ Decomposition of Cs-sorbed organic material releases 25% of Cs.
✓ Cs desorption is significant enhanced by HTT with Mg²⁺ at 250 °C.
✓ M³⁺ (Fe³⁺/Al³⁺) cations indeed desorb more Cs than M²⁺ (Mg²⁺).

Before Cs⁺ adsorption, Mg²⁺ and K⁺ originally occupy the interlayers
During Cs⁺ adsorption, Cs⁺ gradually replace Mg²⁺ in frayed edge sites.
Edge of interlayer region collapsed and Cs diffused into deeper region
By HTT, M²⁺/M³⁺ expanded collapsed layer again and readily replace Cs[±]₂₁

- 1. Cs⁺ is successfully fixed in **collapsed interlayers** by saturation sorption to simulate its tight fixation on FES of clay mineral into soil.
- 2. Higher temp can significant enhance $M^{2+/3+}$ to desorb Cs^+ from collapsed interlayer regions of clay minerals.
- **3. Mechanism** underlying the desorption process of Cs by divalent cations and the **applicability** of the hydrothermal treatment to remove trace amounts of Cs from actual radioactive soil are clarified.

THANK YOU FOR YOUR ATTENTION!

FOR T