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Objectives

Background
Feasibility study of Pb-Bi direct contact boiling water reactor 
(PBWFR) for innovated nuclear reactor energy system.
Purpose
To investigate the compatibility of high Cr steel 

in the steam injecting Pb-Bi 
Study items 

Effectiveness of Cr contents for corrosion resistance 
Influence of (PH2/PH2O) ratio in the injecting steam

on corrosion behavior
Effect of temperature on the steel corrosion
Selection of more promising Cr steel and

evaluation of its applicability 
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System of the Experimental Apparatus
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Chemical Composition of Tested Materials (wt.%)

C Si Mn Ni Cr Mo W V Nb
0.1 0.1 0.2 0.02 7.7 ~ 1.9 0.2 ~
0.1 0.4 0.4 0.1 8.6 1.0 ~ 0.2 0.08
0.1 0.3 0.5 0.3 8.8 0.3 1.9 0.2 0.07

0.15 0.1 0.5 0.6 10.0 0.5 ~ 0.2 ~
0.1 0.3 0.5 0.2 12.0 1.1 1.0 0.3 0.1
0.1 0.3 0.5 0.3 12.0 0.3 1.9 0.2 0.05

0.01 1.0 0.5 4.5 16.0 ~ ~ ~ 0.2
0.01 1.4 0.7 ~ 17.7 ~ ~ ~ ~

F82H
STBA28

RECLOY
17-5PH

Steel

NF616
TMK1

HCM12
HCM12A
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Summary of the Experimental Parameters

400 450 500
Ｏ ~ ~
Ｏ Ｏ Ｏ

Ｏ ~ ~
Ｏ ~ ~

   Ｏ : tested,     ~ : not tested

Exposure
Periods

Oxygen Potential Relatives

0.25 MPa 500 hours

Temperatures (℃）

5 x 10-6

1 x 10-5

DH

500 ppb
1,000 ppb

1 x 10-6

Pressures
in Test TankP H2/P H20

< 3 x 10-7 < 30 ppb
100 ppb

P H2

P H2O

M H2O
＝ (DH )

M H2  M H2O  =  molecular weight of H2O
 M H2  =  molecular weight of H2

(DH )＝disolved hydrogen concentration
relashionship between (P H2/P H2O) and DH
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Oxygen Potential: Ox Electro-motive Force: E
and Oxygen Concentration: C

Nernst’s equation for electro-motive force

E = ( OREF – OPb-Bi )/nF
where E: electro-motive force for an electrochemical system

OREF : oxygen potential of reference electrode                      
OPb-Bi : oxygen potential of Pb-Bi 

n: atomic valence of oxygen ion,  F: Faraday’s constant

Calculation of E for oxygen concentration of C

E = [OREF - △GPb(Bi)-oxide - RTln(C/C0)] / nF
where E: electro-motive force calculated for oxygen concentration of C 

△GPb(Bi)-oxide : Gibb’s free energy of formation for Pb(Bi)-oxide
R: gas constant,  T: temperature
C : oxygen concentration in Pb-Bi,  C0 : oxygen solubility in Pb-Bi 
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Experimental Conditions for E, C, and T
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Surface of HCM12A by Post-Exposure Treatment

optical microscope
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Weight Changes after Na Treatment (400℃)
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Conclusions & Future Works

Corrosion behaviors for some types of high Cr steel were examined.
It was identified that :

Higher Cr content lead more corrosion resistance to Cr steel, and 
more  than 9 % Cr content would be feasible for an application.

DH seemed to be little effective to control corrosion, but would be 
effective  to avoid PbBi-slug formation or its precipitation.

DH should be limited less than 1,000 ppb to lower the amount
of corrosion product (Fe-oxide ) released in Pb-Bi.

Corrosion rate increased with temperature, and Cr content 
effectiveness decreased at temperatures 500oC.

Corrosion rate of 12Cr steel were estimated as a few μm /y at 400oC
and evaluated to be promising for a large reactor structure.

Further experiments are in progress to investigate the corrosion behavior of
12Cr steel and other advanced materials (refractory metals and ceramics).


