Thermal-Hydraulic Performance of Printed Circuit Heat Exchanger in Supercritical CO₂ Cycle

K. Nikitin, Y. Kato, L. Ngo

Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

Study Incentives

• Supercritical CO₂ cycle demonstrates some advantages in comparison to He cycle

- higher cycle efficiency (Y. Kato, 2003),
- better turbomachinery (Y. Muto, 2003),
- power generation cost is expected to be smaller.
- High efficiency recuperator is a crucial component of supercritical CO₂ cycle. The targeted recuperator effectiveness is as high as 95%.
- **O PCHE** is a promising heat exchanger because it
 - is able to withstand the pressure up to 50 MPa and the temperature up to 700°C (reliability),
 - has a high compactness and high efficiency (cost reduction).

PCHE = <u>**Printed**</u> <u>**Circuit**</u> <u>**Heat**</u> <u>**Exchanger**</u>

What is the PCHE?

- Fluid flow channels are etched chemically on metal plates.
 - Typical plate: thickness = 1.6mm,

width = 600mm, length = 1200mm,

- Channels have semi-circular profile with 1-2 mm diameter.
- Etched plates are stacked and diffusion bonded together to fabricate a block
- The blocks are then welded together to form the complete heat exchanger core

Construction of PCHEs

Plate stacking

Diffusion bonding

the bond strength is achieved by pressure, temperature, time of contact, and cleanliness of the surfaces

Advantages of PCHE

Photo-etching technology: → Micro channels with smaller hydraulic diameter D_h: ⇒ Pressure capability in excess of 50 MPa. σ = PD_h/2t. ⇒ Compact size (L) or Higher efficiency (98%). L = D_h/4j Pr^{2/3} N where N = (T_o - T_i)/ΔT_{LMTD}. → No plate-fin brazing: ⇒ Manufacturing cost reduction.

Diffusion bonding technology: Maintain parent material strength: Extreme temperature from cryogenic up to 700°C.

2005/1/5

Experimental Facility

Experimental Loop

PCHE Test Section

Dimension of 896 x 76 x 71 mm and a dry mass of 40 kg

		Channel g	Area, (m²)			
	Channels number, <i>n</i>	Diameter, D	Active length, L	Hydraulic diameter, <i>D_h</i>	Heat transfer, A	Free flow, A _c
Hot side	144	1.69	1062	1.03	0.664	0.00016
Cold side	66	1.69	1170	1.03	0.336	0.000074

2005/1/5

Experimental Conditions

No.	1	2	3	4	5			
Pressure, MPa	Cold side	6.5	7.4	<mark>8.5</mark>	9.5	10.2		
	Hot side	2.2	2.5	2.8	3.0	3.3		
Temperature,	Cold side	90-108						
٥C	Hot side	280-300						
Flow rate, kg/h	-	From 40 to 80 with 5 kg/h increment						

Overall Heat Transfer Coefficient, U

> LMTD method:

$$U = \frac{\frac{1}{2}(|Q_{c}| + |Q_{h}|)}{A_{h}F_{G}\frac{(T_{h,i} - T_{c,o}) - (T_{h,o} - T_{c,i})}{\ln[(T_{h,i} - T_{c,o})/(T_{h,o} - T_{c,i})]}$$

where

- $Q_c = W_c(h_{c,o} h_{c,i})$
- $Q_h = W_h(h_{h,o} h_{h,i})$
- A Heat transfer area, 0.664 m²
- F_G Geometric factor, 0.9624
- *h*, *c* hot, cold side
- o, *i* outlet, inlet

Heat Loss Estimation (1)

Total value:

) From outer surface temperature of PCHE insulator

 $Q_{loss} = \sum_{i=1,10} A_i^{ins} \left[\varepsilon \sigma (T_{s,i}^4 - T_{surr}^4) + h_{conv,i} (T_{s,i} - T_{surr}) \right] \approx 110 \sim 120 \ [W]$

2) From heat balance

Heat Loss Estimation (2)

Effect on the outlet temperatures:

3) From 2D FLUENT CFD calculations (with(2)/without(1) heat loss)

4) From the heat loss compensation experiments

Overall heat transfer coefficient, U

 $U = (18.6 \pm 6.8) + (0.105 \pm 0.002) \times \text{Re},$

 $2 \times 10^3 < \text{Re} < 6 \times 10^3$

2005/1/5

Pressure factor, f_P

 $f_{P,hot} = (0.032 \pm 0.002) - (1.01 \times 10^{-6} \pm 6 \times 10^{-8}) \times \text{Re}, \ 2 \times 10^{3} \le \text{Re} \le 6 \times 10^{3}$ $f_{P,cold} = (0.066 \pm 0.001) - (1.11 \times 10^{-6} \pm 7 \times 10^{-8}) \times \text{Re}, \ 6 \times 10^{3} \le \text{Re} \le 12 \times 10^{3}$ Tokyo Institute of Technology

PCHE cross-section

Head loss in PCHE

I.
$$K_b = K_1 * K_2 * K_3$$

from Hydraulic Engineering, A. Lencastre, 1987
II. $K_b = 0.946 \sin^2\left(\frac{\theta}{2}\right) + 2.047 \sin^4\left(\frac{\theta}{2}\right)$
from JSME Textbook, 2003
III. CFD FLUENT
 $\therefore N/A yet$

2005/1/5

PCHE's Effectiveness

 $\gamma = \frac{\dot{Q}}{\dot{Q}_{\max}} = \frac{C_c (T_{c,o} - T_{c,i})}{C_{\min} (T_{h,i} - T_{c,i})}$

 PCHE's effectiveness reaches value up to 98.7%.

 1% of recuperator effectiveness → the gas turbine cycle efficiency 0.6%

 2005/1/5
 Tokyo Institute of Technology

MUSE Code Simulation

Developed for plate-fin heat exchanger,
Use <u>Wavy fin</u> plate heat exchanger model,
This model is the most similar

model to our tested PCHE.

Various plate-fin models

Experimental data & MUSE Calculations

The different slopes may be due to:

- Difference of PCHE from wavy fin model,
- Neglect of cross flow in the distributor sections.

2005/1/5

Conclusions

> The overall heat transfer coefficient and pressure loss factor of PCHE were investigated both experimentally and numerically; the empirical correlations are proposed.

> The method to take into account the heat loss for overall heat transfer coefficient estimations has been established.

The overall heat transfer coefficient varies from 300 to 650 W/m²K while the heat transfer effectiveness reaches up to 98.7 %.

> PCHE might be judged as a promising compact heat exchanger for the high efficiency recuperator.

> The experimental data are currently used for CFD FLUENT code verification and developing the new heat exchanger type.