## Study on Pb-Bi-Water Direct Contact Two-Phase Flow and Heat Transfer

INES-1, Tokyo, Japan, November 1-4, 2004,

by

M. Takahashi<sup>1</sup>, H. Sofue<sup>1</sup>, M. Matsumoto<sup>1</sup>, F. Huang<sup>1</sup>, Y. Pramono<sup>1</sup>, Novitrian<sup>2</sup>, T. Iguchi<sup>1</sup>, T. Matsuzawa<sup>3</sup>, and S. Uchida<sup>3</sup>

<sup>1</sup>Tokyo Institute of Technology (Tokyo Tech.) <sup>2</sup>Department of Nuclear Engineering, Tokyo Institute of Technology <sup>3</sup>Advanced Reactor Technology Co., Ltd. (ARTECH)



# CONTENT

- 1. Concept of Pb-Bi Cooled Direct Contact Boiling Water FR (PBWFR)
- 2. Objectives
- 3. Experimental apparatus and operational procedure
- 4. Result of Pb-Bi circulation flow
- 5. Analytical evaluation of Pb-Bi flow rate
- 6. Direct contact heat transfer coefficient
- 7. Conclusion

### **Development of Innovative Reactor System**



<u>Pb-Bi Cooled Direct Contact Boiling Water FR (PBWFR)</u>

## **Previous studies**

| Takahashi, et al. (Tokyo<br>Tech.), Russian researcher,<br>Kinoshita, et al. (CRIEPI),<br>Corradini (Wisconsin-Madison<br>Univ.), Branover, et al. (Ben<br>Gurion Univ.) | Pb-Bi-Water Boiling,<br>Hg-Volatile Liquid、Pb-Bi system,<br>Bubble observation with X-ray |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Sakai, et al. (JNC-CRIEPI)                                                                                                                                               | Analysis of SG Pipe Failure                                                               |
| Saito (Tokyo Tech.)                                                                                                                                                      | Wood's metal-Nitrogen Two-Phase<br>Flow                                                   |

## **Objectives**

- To clarify the lift pump performance for Pb-Bi circulation.
- To clarify the direct contact boiling heat transfer.

## **Experiment of Pb-Bi-Water Direct Contact Boiling Two-phase Flow**





Pb-Bi-Water Direct Contact Boiling Two-phase Flow Test Apparatus



#### **Direct Contact Boiling Test Loop**



# **Operational procedure**

- 1. Evacuation of Pb-Bi and water loops
- 2. Charge of Pb-Bi into the Pb-Bi loop and heat up to 300
- Water supply into water loop and heat up to 220
- 4. Natural circulation in Pb-Bi loop with heater pin power
- 5. Injection of water into Pb-Bi loop
- 6. Increase in the water injection flow rate and heater pin power
- 7. Control of condenser cooling
- 8. Achievement of desired flow rate, temperature and pressure

### **Controlled parameters in operation**

|                   |                       | Experimental condition | Rated conditions |
|-------------------|-----------------------|------------------------|------------------|
| Heater pin bundle | Power (kW)            | 5-106                  | 133              |
|                   | Pb-Bi temp. at outlet | 308-469                | 460              |
| Injected water    | Flow rate (kg/h)      | 5.8-245                | 256              |
|                   | Temperature ( )       | 198-228                | 220              |
| Steam pressure (N | IPa) (Condenser       | 2, 7                   | 7                |
| cooling)          |                       | L                      | 1                |

#### **Result of operation**

|                                               | Result  | Rated conditions |
|-----------------------------------------------|---------|------------------|
| Pb-Bi temp. at inlet of heater pin bundle ( ) | 278-414 | 310              |
| Pb-Bi flow rate (L/min)                       | 56-61   | 36.5             |
| Temperature in chimney ( )                    | 303-316 | -                |





# **Evaluation of Lift Pump Performance**

#### Driving force of Pb-Bi circulation by steam lift pump



$$\Delta P_a = G^2 x \left( \frac{1}{\rho_w} + \frac{1}{\rho_p} \right)$$

## **Comparison of Experiment and Analysis**





$$U = \frac{Q}{V\Delta T_{sat}}$$

## Q : Heat transfer rate

$$\Delta T_{sat} = T_{in} - T_{sat}$$
 Superheat



### Volumetric Boiling Heat Transfer Coefficient



## **Conclusion**

- Pb-Bi was circulated successfully by boiling bubbles of injected water into Pb-Bi above the heater pin bundle.
- 2. The experimental result of Pb-Bi flow rate agreed well with the analytical result.
- Volumetric heat transfer coefficient ranged 20-100 kW/m<sup>3</sup>K which was higher than the result of the other study. It decreased with superheat.