COE-INES-1

-JNC-

CORE CONCEPT OF COMPOUND PROCESS FUEL CYCLE

November 2004

Tetsuo Ikegami

Japan Nuclear Cycle Development Institute (JNC)

Objectives

Proposal of innovative nuclear fuel cycle system

- economic competitiveness
- efficient utilization of nuclear fuel resources
- reduction of environmental burden
- enhancement of nuclear non-proliferation
- # Effective utilization of LWR spent fuel and suppression of LWR spent fuel pile-up
- # Smooth evolution from LWR system to fast reactor system

A new fuel cycle concept "Compound Process Fuel Cycle"

-.INC

Concept of Compound Process Fuel Cycle

Pyrochemical Processing	-Pre-process procedu (only de-cladding - Only volatile FP is r	re of conventional reprocessing and pulverization) emoved	Voloxidation <u>AIROX</u> <u>DUPIC</u>		
-LWR spent fuels are multi-recycled without conventional reprocessing but with only pyrochemical processing. - U, Pu, MA, FP are recycled. utilization of FR core					

Merits of the Compound Process Fuel Cycle Concept

(1) Significantly simplified process compared with conventional reprocessing	Economic competitiveness
(2) Small TRU loss rate compared with conventional reprocessing No MA increase after multi-recycling	Reduction of environmental burden
(3) More than 5 times increase in burn-up of LWR MOX spent fuel	Efficient utilization of resources
(4) Lumped processing of all actinides including FP	Nuclear non- proliferation

(5) Suppression of LWR spent fuel pile-up

-J/\C-

Core Specification

Fast Reactor Fuel (2n-1) time Recycled LWR Fuel 2n time Recycled LWR Fuel

- Control Rod (Main)
- ✤ Control Rod (Buck up)
- Radial Shield

Both of neutron absorption effect and volume effect* are taken into account.

* : Reduction of heavy metal volume fraction due to residual FP in recycled fuel

Br	Kr	Xe	Cs		Те	Sb
1.00	1.00	1.00	0.98	0.98	1.00	1.00
Мо	Pd	Ru	Rb	Cd	In	
0.44	0.01	1.00	0.98	1.00	0.88	

FP Removal Rates

Pu mass & Pu fissile reach to equilibrium state after 1st or 2nd recycle while residual FP increases monotonically. Multi recycle is limited up to 4 times.

Fuel Flow of LWR Spent Fuel

Major Core Nuclear Characteristics

Item	<u>Core 1</u> (1st & 2nd	<u>Core 2</u> (3 rd & 4 th
	time recycle)	time recycle)
Pu enrichment of fast reactor fuel (wt%)	26.2	23.9
Burn-up reactivity loss (% k/kk')	3.78	3.95
Maximum fast neutron fluence (n/m ²)	3.9 × 10 ²⁷	3.9 × 10 ²⁷
Maximum linear heat rate (W/cm)	383	371
Breeding ratio (EOC)	1.08	0.99

Power Distribution in Radial Direction (Core 2 --- 3rd and 4th Recycle)

Fuel Burn-up Evolution

The burn-up of BWR MOX fuel reaches 330 GWd/t which corresponds to more than five times of that of BWR MOX S/F.

<u>Actinide Mass which Leaks out of the System</u>

 \sim

Compound process cycle Conventional reprocessing

$$(0.78+3.76L1/L2)/5 = 0.91$$
 (L1 = L2)
= 0.23 (L1/L2 = 0.1)

12

<u>Changes during Recycling</u> (Fuel Heat Generation -- after 4 year cooling)

Increase of fuel heat generation due to multi-recycling is less than twice of LWR S/F.

<u>Changes during Recycling</u> (Fuel Radioactivity-- after 4 year cooling)

Conclusions

A new fuel cycle concept "Compound Process Fuel Cycle" is proposed.

The feasibility of the cycle has been studied, mainly in core characteristics, taking an example for BWR MOX spent fuel.

Major Results

The BWR MOX spent fuel can be recycled 4 times achieving more than 330 GWd/t of burn-up.

Efficient utilization of resources and reduction of environmental burden can be expected.

·Reduction of actinide mass leaking out of the system

•No MA mass increase after recycling

·More than 5 times increase in fuel burn-up

Economic competitiveness, enhancement of nuclear nonproliferation, and suppression of LWR spent fuel can be expected. - INC.