Separation of Rare Metal Fission Products in Radioactive Wastes in New Directions of Their Utilization

Masaki OZAWA ^{† 1,2}, Tatsuya SUZUKI ^{†2}, Shinich KOYAMA ^{† 1} and Yasuhiko FUJII ^{†2}

† 1 Japan Nuclear Cycle Development Institute (JNC)†2 Tokyo Institute of Technology (TITECH)

JAPAN

Introduction-3

4

Rare metal	Ru	Rh	Pd	Tc	Te	Se	Note
Amount (kg/HMt)	12.5	3.6	11.1	3.3	2.7	0.2	FBR-SF;150,000MWd/t, Cooled 4 years.

Spent Nuclear Fuel, As an Artificial Ore

: Elements in the FBR-S.F. (g/t), : Elements in the Earth Crust (g/t)

6

RMFP in SNF-2

Fig. Specific Radio Toxicity (Hazard Index) of RMFP in FR Spent Fuel after 4 years cooling.

index).

Fig. Time Dependency of Specific Activities of RMFP Separated from the FBR Spent Fuels cooled for 4 years "Clearance levels" are proposed by IAEA"TECDOC-855" from 10⁻¹ to 10³ Bq/g, for instance, 0.1 Ru-106 <10, 100 Tc-99<1000 (as for reference, 74 Bq/g, Japan domestic legal

Fig. Catalytic Electrolytic Extraction of RMFP from Simulated HLLW Galvanostatic Electrolysis ; 500mA/cm² (Cathode), Room temp. Cathode; Pt-Ti, 20cm², S/V: 1/15cm⁻¹, Pd²⁺ Addition; Continuously (2.53gPd²⁺/hr), Pd_{added}/Ru=3.6, Pd_{added}/Rh=16.0, Pd_{added}/Re=9.1

Sptn. of RMFP-3

Effect of CEE (II); Tc

Fig. Acceleration of Electro-deposition of TcO₄⁻ by Addition of Pd²⁺ Data obtained by KRI through JNC-KRI Collaboration 2003

Deposition of Tc or Re with Pd

- Interaction between TcO₄⁻ or ReO₄⁻ and Pd²⁺ in the bulk solution
- Deposition of ReO₃ and Pd on the cathode
- No change of the deposition potential for Re from the mono ionic solution of Re

Deposition of Ru with Pd

- No interaction between RuNO³⁺ and Pd²⁺ in the bulk solution
- Deposition of Ru-Pd alloy on the cathode
- Decrease of the deposition potential for Ru comparing to that in the mono ionic solution of Ru

Fig. Model of Catalytic Electrolytic Extraction

Fig. Experimental Cell

Table Reduction Ratios by Catalytic Electrolytic Extraction

System		Red	Composion on			
	Pd	Ru	Rh	Re	Tc	electrode Surface
Pd	>99	-	-	-	-	-
Ru	-	14	-	-	-	-
Rh	-	-	>99	-	-	-
Re	-	-	-	16	-	-
Tc	-	-	-	-	1.7	-
Pd-Ru	99.3	60.9	-	-	-	Pd Ru
Pd-Rh	99.0	-	84.7	-	-	Pd Rh
Pd-Re	99.4	-	-	10.0	-	Pd > Re
Ru-Rh	-	58.2	32.5	-	-	Ru Rh
Ru-Re	-	14.5	-	13.5	-	Ru > Re
Rh-Re	-	-	10.0	43.0	-	Rh > Re
Pd-Ru-Rh-Re(1:1:1:1)	95.7	46.0	14.5	19.0	-	Pd Ru Rh > Re
Pd-Ru-Rh-Re(3.5:4:1:1)*	99.0	11.8	2.10	33.4	-	Pd Ru Rh > Re
Pd-Ru-Rh-Re(3.5:4:1:1)*	94.7	16.5	26.6	55.3	-	Pd Ru Rh > Re

*1 : Pd block addition

*2 : Pd 5 divided additon

individual particle \iff <u>*ca.*</u> 1000nm

Fig. EDS(EPMA) of the deposits on the Pt Electrode from Nitric Acid Solution ; Soln. Composition : Pd-Ru-Rh-Re(3.5:4:1:1) , Divided Addition of Pd²⁺

Fig. The Cathodic Polarization Curves of Pd, Ru, Rh, Re and Tc deposit Pt Electrodes and Pt Electrode (*left*), and Pd-Ru-Rh-Re deposit Pt Electrode* (*right*) *Soln. Composition : 3.5:4:1:1, Pd²⁺ Divided Addition

φ_{Hinit.} (V vs. Ag/AgCl)

Fig. Relation between Cathodic Current Corresponds to Hydrogen Evolution at -1.25V and Initial Hydrogen Evolution Potential (f_{Hinit.}) on each Deposit Electrode in 1<u>M</u> NaOH. Deposits from the quaternary ionic solution; *1, Pd:Ru:Rh: Re=1:1:1:1, *2, Pd:Ru:Rh:Re=3.5:4:1:1(Pd²⁺ bloc addition), *3, Pd:Ru:Rh:Re= 3.5:4:1:1(Pd²⁺ divided addition)

Electrolytic H₂ Production (RMFP-Ti)

Fig. Energy Consumption for Electrolysis of 1<u>M</u> NaOH, in the case of RMFP deposit Ti Electrodes

Direction -1

Fig. New Back-End Concept ; Fission-Energy Cycle and Fission-Product Cycle

Fig. Symbiotic Energy System by Hydrogen and Nuclear, Bridging by RMFP22

Conclusions

Separation and Fabrication

- Abundance of RMFP (Ru, Rh, Pd, Tc, Se, Te) in Spent Fuel
- ·Applicable of Catalytic Electrolytic Extraction (CEE) Method

Utilization

- **RMFP** as Catalysts of H₂ Production and Fuel Cell
- Excellent Ability of Quaternary, Pd-Ru-Rh-Re deposit Pt or Ti electrodes for Electrolysis of either Alkaline or Sea Water
- Expectation of ⁹⁹Tc and Re in this direction of Utilization

Strategic View

- Symbiotic Energy System by hydrogen and Nuclear, bridging by RMFP
- New Distribution of Precious Rare Metal
 Natural RM "Noble" Use, RMFP Industrial Use
- New Back-End Fuel Cycle
- Fission-Energy cycle and Fission-Product cycle

*1 Pd-Ru-Rh-Re=1-1-1-1 *2 Pd-Ru-Rh-Re=3-4-1-1 ; Pd/(Ru+Rh+Re)=1.6 Bloc Addition of Pd2+

*3 Pd-Ru-Rh-Re=3-4-1-1 ; P d/(Ru+Rh+Re)=1.6 Continuous Addition of Pd2+

Fig. The Initial Hydrogen Evolution Potentials on Various RMFP-deposited Pt Electrodes

Fig. Cathodic Currents for Hydrogen Evolution of RMFP deposit Pt Electrodesat-1.25V (Vvs.Ag/AgCl)) in 1M NaOH and in Artificial Sea Water