INES-1 International Symposium on Innovative Nuclear Energy Systems, October 31- November 4, 2004, Tokyo, Japan

Development of Polonium Surface Contamination Measure in Lead-Bismuth Eutectic Coolant

Toru OBARA, Terumitsu MIURA, Hiroshi SEKIMOTO Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

Introduction

Lead-Bismuth Eutectic (LBE)

- advantageous characteristics such as a high boiling point, a low melting point, and chemically inert.
- can be utilized as a coolant and/or target for innovative fast reactors and accelerator-driven subcritical systems (ADS).

Polonium issue

one of the problems to be solved in the use of LBE

Polonium-210

- □ produced by neutron capture of bismuth-209 in LBE
- a radioactive nuclide that emits 5.3 MeV alpha-rays with a 138-day half life
- can be serious problem in inhalation or sticking to skins

Measure for polonium issue

- \Box The shielding of alpha-ray is easy.
- Not a serious problem if the sealing of the primary loop is good.
- It can be a serious problem in the maintenance of the primary loop or in the coolant leak accident.
- Removal of polonium surface contamination is necessary before the maintenance or in the accident.

Polonium surface contamination removal

Use of solvent

- The area in the primary loop to be decontaminated can be large.
- The amount of contaminated solvent can be also large.
- The regulation of polonium contaminated liquid is strict.
- It can be almost impossible to release polonium contaminated solvent to the environment.

Other effective method should be developed.

Present study

- 1. Study of baking method for polonium contamination
- Study of Method to analyze polonium density distribution by alpha-ray spectrum using unfolding method

- 1. Study of baking method for polonium contamination
 - Purpose
 - Development of baking method for the removal of polonium surface contamination
 - Experiments
 - Quartz glass plate
 - □ Stainless steel plate (preliminary)

Quartz glass baking experiment -Polonium contamination of quartz glass plate -

- Neutron irradiated LBE was heated in an infrared furnace which was filled with argon gas (Temp. 900).
- During the heating, a piece of quartz glass plate was set on the alumina crucible (Temp. 600).

Quartz glass baking experiment -Baking of contaminated quartz glass-

- The contaminated quartz glass plate was baked in a vacuum (2Pa).
- Baking temperature
 - □ 200 , 300 , 400 , 500
- Baking time
 - 2min., 5min., 15 min.,
 60min., 180min.
- Repetition of baking
 - Max. 4 times

Quartz glass baking experiment -Measurements-

- Before and after the each baking, the weight of stuck material on the glass and the alpha-ray from the material were measured.
- The effect of the baking was estimated.
 - Change of mass
 - Change of alpha-ray count

Quartz glass baking experiment -Results-

Fig. 1 Decrease of mass after baking

Fig. 2 Decrease of alpha-ray count after baking

Stainless steel baking experiment -Polonium contamination of stainless steel -

- Neutron irradiated LBE in an alumina crucible was heated in a vacuum (610°C, 0.4Pa).
- A 316SS plate was set above the LBE (230°C).
- Mass and alpha-ray count of adherent material on the stainless steel plate were measured.

Stainless steel baking experiment -Baking of polonium contaminated stainless steel -

- The contaminated stainless steel plate was baked in a vacuum (0.4Pa).
 - Baking temperature
 300°C, 400°C, 500°C, 600°C
- Baking time
 30 min.
- Mass and alpha-ray count were measured after the baking.

Stainless steel baking experiment -Results -

Fig. 3 Decrease of mass after baking

Fig. 4 Decrease of alpha-ray count after baking

Discussion for baking experiment

- Polonium on stainless steel was released at 500°C (0.4Pa). Vapor pressure of Pb-Po at 500°C is 0.47Pa (Buongiorno, 2003). This fact suggests that polonium on the stainless steel was Pb-Po.
- Polonium on quartz glass plate was released at 300°C (2Pa). This fact suggests that polonium on the quartz glass was a simple substance of Po.
- The reason of the difference is under investigation. (Because of the difference of evaporation and adherent temperature? Because of the difference of material (quartz glass, stainless steel?)
- There is a possibility to remove polonium contamination without removing other non-radioactive material by the baking method.

- 2. Study of Method to analyze polonium density distribution by alpha-ray spectrum unfolding method
 - Purpose
 - Development of a method to estimate polonium-210 density distribution in LBE metal by alpha-rays spectrum from the surface.
 - It can be used for investigation of polonium surface contamination.

Method of polonium distribution estimation from alpharays spectrum

Alpha-rays spectrum

Polonium distribution in lead-bismuth eutectic

Unfolding calculation

$$c_i = \sum_{j=1}^n A_{ij} x_j$$
 (*i*=1,...,*m*)
(*j*=1,...,*n*)

Constraint

 $x_i \geq 0$

$$j = 1, \ldots, n$$

(m > n)

$$J = (\mathbf{A}\mathbf{x} - \mathbf{c})^T \mathbf{S}^{-2} (\mathbf{A}\mathbf{x} - \mathbf{c})$$

C_i: Counting rate of i'th bin in alpharays spectrum

A_{ii} : Response function for j'th layer

x : Number of alpha-rays sources at j'th layer

m: Number of energy bins of alpharays spectrum measurement

n : Number of layers of LBE column

 S_{ii} : Error of C_{i}

Optimum \mathbf{x} is calculated to minimize J.

UFO/Q code, which was developed for neutron spectrometry, was used.

Example of measured alpha-ray spectrum

 α -counts from Ingot2-5

Calculation result : Polonium distribution (40 layers)

Depth from Surface [μ m]

Discussion for polonium distribution analysis

- It was shown that vertical distribution of polonium from the surface could be calculated by the spectrum of alpha-rays from the surface.
- To estimate the distribution exactly, alpha-rays spectrum measurement with low errors is needed.
- It is difficult to estimate the distribution very close to the surface because of rapid change of the spectrum.
- It is expected to utilize the method for the study of polonium migration in metals and for the investigation of polonium surface contamination.

Conclusion

- The polonium contamination issue were discussed.
 - To develop an effective measure to remove polonium surface contamination is important.
 - □ Decontamination using solvent can not be effective.

- Experiments to remove polonium contamination on quartz glass by baking method were performed.
 - The polonium can be removed if the baking temperature is 300°C or higher in a vacuum (2 Pa).
 - □ This fact suggests that the polonium is single substance.

- Preliminary experiments to remove polonium contamination on stainless steel by baking method were performed.
 - The polonium can be removed if the baking temperature is 500°C or higher in a vacuum (0.4 Pa).
 - This fact suggests that the chemical form of the polonium is leadpolonide.
 - It is needed develop an effective method by low baking temperature.

- A method to estimate polonium density distribution in depth by spectrum of alpha-ray was developed using unfolding method.
 - The method make it possible to investigate the polonium diffusion phenomena in metal.
 - The method can be used for the investigation of the polonium surface contamination.