Design Study of Pb-Bi- and NaK-Cooled Small Deep Sea Fast Reactors

Akira Otsubo and Minoru Takahashi

N1-18, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan Tel: 81-3-5734-2957, Fax: 81-3-5734-2957, E-mail: mtakahas@nr.titech.ac.jp Abstract – The liquid lead-bismuth eutectic (Pb-Bi) has good compatibility with water, which is different from sodium.

It is expected that the Pb-Bi could be used as a coolant of the deep sea fast reactor (DSFR).

Physics analysis of the Pb-Bi-cooled small reactor cores with and without inner control rods was performed. The coolant of Pb-Bi seems to be good as well as NaK for DSFR

Fig. 1 Demand of electric power for activities in the sea

Fig. 2 Supply of electric power

Fig. 3 Schematic of the deep sea fast reactor (DSFR)

Fig.4 Structure of DSFR with power of 40kWe

Fig. 5 DSFR with power of 200kWe

Fig. 6 500kWe System

Table 1 Comparison of NaK- & Pb-Bi-cooled 200kWe DSFRs used in the 6km-deep sea	Item	NaK	Pb-Bi
	Weight	64 t	67.5 t
	S.S.corrosion	Twice as high as in sodium	Higher than in NaK
	Coolant & sea water reaction	Violent reaction.	No reaction (right) several <u>hundreds</u> kW 15 th from the bottom
	Core immersion accident	Re liner in cladding required	No liner required
	Neutron economy	Good	Excellent
	Coolant freezing at the sea lowest temp. of 2°C	No freezing due to melting point of -12°C	Freezing. Heating with NaK reactor required

Fig. 7 Sea bottom base using acoustic tomography system

Fig.8 Calculation results of sea water temperature and velocity

Sea surface

Methane hydrate layer

Fig. 9 Methane Gas Production System

Fig. 8 Sea bottom observation base with AUVs

(a) Reactor without control rods inside core

(b) Reactor with control rods inside core

Fig.10 Schematics of Pb-Bi-cooled and NaK-cooled reactors

(a) Reactor without control rods inside core

(b) Reactor with control rods inside core

Fig. 11 Analytical systems of Pb-Bi-cooled and NaK-cooled reactors

		Without inner cont. rods	With inner cont. rods
Fuel	Nitride fuel	UN-PuN	UN
	Pu fraction	50wt.%	Owt.%
	Enrich. of U ²³⁵	20%	20-60%
	Enrich. of N ¹⁵	100%	100%
Fuel pel.	Outer diameter	5.56mm	5.56mm
	Smear density	85%	85%
Fuel pin	Material	SUS316	SUS316
cladding	Outer diameter	6.5mm	6.5mm
	Thickness	0.47mm	0.47mm
Re liner in cladding		Exist. or not	Exist. or not
Fuel pin pitch		7.3mm	6.5, 7.3mm
Axial reflector		Be, SUS316	Be, cladding, coolant
Core radius		10.5-14.5 cm	20.0cm

Table 2 Analytical parameters

Fig. 12 Dependence of effective multiplication factor K_{eff} on core radius in the reactor without control rods inside core

Fig. 13 Dependence of K_{eff} on enrichment of U²³⁵ in the reactor with control rods inside core

Fig. 14 Change in K_{eff} with burn-up in the real without control rods inside core

Fig. 15 Thermal efficiency and turbine inlet temperature

V. CONCLUSIONS

Development of two types of small reactors is desired. One is the NaK-cooled reactor for about 40 kWe and the other is the Pb-Bicooled reactor of a few hundreds kilowatts to a few megawatts to a few megawatts used as the DSFR.