Hydrogen Production from Supercritical Water -Mechanism of Catalytic Reactions of Biomass by Ruthenium(IV) Oxide-

Yukihiro Izumizaki¹⁾, Ki Chul Park¹⁾, Yuu Tachibana¹⁾, Hiroshi Tomiyasu¹⁾and Yasuhiko Fujii²⁾

> ¹⁾ Department of Chemistry and Material Engineering, Faculty of Engineering, ,Shinshu University

²⁾ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

Biomass is recyclable fuel source

Problems in exploitation of biomass

Low combustion efficiency because of containing high oxygen atom ratios Almost all biomass is solid,which makes difficult to deal as fuels

Enhance their efficiency(containing high H/C ratio) for use as high quality fuels

The necessity of reforming to liquid or gas to ease treatment Decomposition ratios and gas distributions for organic compounds in the presence of RuO_2 catalyst in supercritical water

Organic	Carbon	O/C ratio	Product distribution(%)		
compounds	conversion(%)		CH_4	CO_2	H^2
Naphthalene	96.7	_	48.8	42.7	8.4
Polyethylene	100.6	-	66.6	28.0	5.3
Polypropylene	99.9	-	66.5	26.9	6.5
Porystylene	100.7	-	53.7	39.4	6.9
PET	97.2	0.40	37.3	51.0	11.5
cellulose	97.0	0.83	34.2	50.9	14.6

Mechanism of the gasification catalysis by RuO₂

Hydrogen produced from water

Experiment

Gasification of biomass in SCW using RuO₂ as a catalyst

Experiments were carried out for the following samples

- Cellulose and lignin (main compounds of biomass)
- mixtures of cellulose(75%) and lignin(25%)
 (for the simulation of

biomass)

- Pulp (main sample used in this experiment)
- Paper sludge and recycled paper from Tomoekawa Paper Company

Experimental Procedure

Picture of experimental apparatus(1)

Picture of experimental apparatus(2)

The decomposition ratios for four different samples in the presence or absence of catalyst in SCW

Sample	SCW	SCW+RuO 2
Cellulose	32.0	97.0
Pulp	17.8	71.3
Mixtures (cellulose and lignin)	10.6	32.0
Lignin	8.5	7.9

(Sample:100mg Catalyst:20mg Temp:450 Time:2h)

Unit: %

Gas. ratio=100 × [C in gas products] / [C in samples loaded]

The decomposition of coal and lignin in supercritical water.

Sample	SCW	SCW+RuO ₂
Lignin	8.5	7.9
Coal(Yallourn)	9.5	42.6

Unit: %

(Sample:100mg Catalyst:20mg Temp:450 Time:2h)

Structures of coal and lignin

Gas species produced from each samples

Amount of gas(L) produced from 100g of pure cellulose and pulp

samples produced gases	Cellulose	Pulp
CH_4	32.1L	19.0L
H ₂	13.7L	11.5L

Amount of gas was calibrated under the standard condition.

Gas species produced from paper sludge and recycled paper

(Sample:100mg Catalyst:20mg Temp:450 Time:2h)

Amount of gas(L) produced from 100g of paper sludge and recycled paper

samples produced gases	Paper Sludge	Recycled Paper
CH_4	8.64L	23.3L
H_2	8.70L	12.0L

Amount of gas was calibrated under the standard condition.

Confirmation of production of fuel gases such as methane and hydrogen This method is available about disposing of wastes

Treatment of industrial wastes from paper company

Organic residues are negligible This method enables to decompose waste containing biomass.

Effect of temperature on the productions of gasses from pulp

Mechanism of the gasification catalysis by RuO₂

Amount of gas(L) produced from 100g of pulp at different temperatures

temp produced gases	400	450	500
CH ₄	24.7L	19.0L	11.8L
H ₂	6.09L	11.5L	20.2L

Amount of gas was calibrated under the standard condition.

Change in gas distributions versus the amounts of catalyst(10 mg and 20mg)

Change in amount of RuO₂ catalyst for the gasification of biomass

Amount of gas was calibrated under the standard condition.

Mechanism of the gasification catalysis by RuO₂

Existence of Ru2+ was confirmed by the UV absorption spectrum

Comparison of catalytic reactions between RuO_2 and Ni for the decomposition of biomass

	Methane	Hydrogen	Gasification ratio
RuO ₂ (450)	19.0L	11.5L	71.3%
RuO ₂ (500)	11.8L	20.2L	72.4%
Ni(450)	14.7L	13.9L	50.1%

(Sample:100mg of pulp Catalyst:20mg(RuO₂)/40mg(Ni) Temp:450 Time:2h)

Each Organic residues after reaction

Ni(450

$$RuO_{2}(450)$$

Comparison of catalysts between RuO_2 and Ni for the gasification of naphthalene

	Gasification ratio
RuO ₂ (450)	96.7%
Ni(450)	26.3%

(Sample:100mg of Naphthalene Catalyst:20mg(RuO₂)/40mg(Ni) Temp:450 Time:2h)

RuO₂ is much stronger catalyst for the treatment of Organic compounds than Ni

Conclusions

- The present method using RuO₂ as a catalyst in SCW enables to decompose biomass and to produce fuel gases.
- The gases produced are H₂, CH₄, and CO₂
- Hydrogen production ratio increases with temperature up to 22.1% at 500
- RuO₂ catalyst is superior in catalytic efficiency to other catalyst such as Ni catalyst for decomposition of organic compounds.