Development of a Simple Reprocessing Process Using Selective Precipitant for Uranyl Ions

- Fundamental studies for evaluating the precipitant performance -

Nobuyoshi Koshino^{1,2}, Masayuki Harada¹, Koichi Maruyama², Masanobu Nogami², Kazunori Suzuki², Yasuji Morita³, Toshiaki Kikuchi⁴, and Yasuhisa Ikeda^{1*}

¹ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

- ² Institute of Research and Innovation
- ³ Japan Atomic Energy Research Institute
- ⁴ Mitsubishi Materials Corporation

Background

Flow Diagram of the Simple Reprocessing Process for FBR Spent Nuclear Fuels Using NCP.

Pu and U are precipitated together.High nuclear proliferation resistanceWhole process can be carried out in HNO_3 solution.Simple and economicalNCP consists of C, H, O, N (Fully combustible).Reduce the amounts of HLLW

Objectives

- 1. Investigation of selective precipitation by NCP Precipitation test of U and Pu by NCP **Does NCP precipitate U(VI) and Pu(VI) in high yields? Decontamination factors in this process Does NCP precipitate fission products?** Examination of resistance to y-ray radiation **Does NCP have sufficient resistance for precipitation?** 2. Development of high-performance precipitants **Evaluation of the performances Precipitation ability**
 - **Resistance to** *γ***-ray radiation (***N***-***n***-butyl-2-pyridone**)

Decontamination factors

Precipitation Ratios of Uranyl Ion by NCP

Precipitation test of Pu(VI) by NCP

$[PuO_2^{2+}] = 40 \text{ mM in } 1.5 \text{ M HNO}_3$ at room temperature

1.3 1.1 0.9 abs 0.7 0.5 0.3 0.1 -0.1 800 850 900 950 1000 1050 1100 nm

Precipitation ratio of Pu(VI) =

After centrifuge

Decontamination factors in the Reprocessing Process by Using NCP

 ReO_4^- was used as a simulated ion of TcO_4^- .

1st treatment (1M UO_2^{2+}) : DFs of Ba²⁺ and RuNO³⁺ are more than 100. 2nd treatment (0.3M UO_2^{2+}) : DFs of most of FPs (except ZrO²⁺) can be achieved >100.

 $DF = \frac{[FP]_{S} / [UO_{2}^{2+}]_{S}}{[FP]_{D} / [UO_{2}^{2+}]_{D}}$

 $[FP]_{S}$, $[UO_{2}^{2+}]_{S}$: Concentrations of FP and UO_{2}^{2+} in treated solution $[FP]_{P}$, $[UO_{2}^{2+}]_{P}$: Concentrations of FP and UO_{2}^{2+} in precipitate

SEM images of U-NCP precipitate (× 1000)

 $1 M UO_2^{2+}$

0.3	Μ	UO ₂ ²⁺	
-----	---	-------------------------------	--

	Ba ²⁺	RuNO ³⁺	Ce ³⁺	Nd ³⁺	ZrO ²⁺	MoO ₂ ²⁺	ReO ₄ -
DF (1M UO₂²⁺)	>100	>100	22	20	6	27	20
DF (0.3M UO ₂ ²⁺)	>100	>100	>100	100	46	≈100	≈100

Rough surface condition

Efficient washing of precipitate

Higher DFs

Evaluation of Precipitants Capability (Precipitation ability for UO₂²⁺)

	NProP	NBP	NCP
	N—Pr ⁿ	O N—Bu ⁿ	
log P ^a	0.88	1.37	2.16
Precipitation ratio of UO ₂ ²⁺ ion ^b	58%	67%	73%

^a Hydrophobicity (*P* = octanol/water partition coefficient of precipitant).

^b Condition : [precipitant]/[UO_2^{2+}] = 1.5 in 3M HNO₃ at 25 °C.

The precipitation abilities are high enough to adjust Pu contents.

Decontamination factors?

Comparison of decontamination factors

Precipitant	NProP	NBP	NCP
	O N—Pr ⁿ	O N—Bu ⁿ	
log P _{cal}	0.88	1.37	2.16
Ba ²⁺	> 100	> 100	> 100
Ce ³⁺	> 100	> 100	22
Nd ³⁺	> 100	> 100	20
RuNO ³⁺	> 100	> 100	> 100
ZrO ²⁺	≈ 1 00	91	6
MoO ₂ ²⁺	> 100	≈ 100	27
ReO ₄ -	> 100	16	20
SEM image (× 1000)	C00000 HD15 Emi 20 deV st. ds. * 20ut	00000 HD15 Pm 20 GeV x1 dv 50ur	Occord KD14. 9min 20. Gkv/ x1. Gk * Sduni

JAERI

★MITSUBISHI MATERIALS

K

Resistance of NCP to γ **-ray Radiation**

$\left(\begin{array}{c} \text{NCP} & \xrightarrow{60}\text{Co} & \gamma \text{-ray} \\ \text{in 3M HNO}_3 & \xrightarrow{60}\text{Co} & \gamma \text{-ray} \\ \hline & ([\text{NCP}]/[\text{UO}_2^{2^+}] = 3) \end{array}\right) \cup \text{-NCP precipitate}$					
Irradiated dose	0 Gy	100 kGy	200 kGy	1 MGy	3 MGy
Appearance of NCP					
Appearance of ppt	D	1		10	
Precipitation ratio*	99.9 %	99.9 %	44.3 %	22.1 %	10.9 %

NCP has sufficient resistance to *y*-ray (>>3.3 kGy).

 γ -ray radiation order in NCP precipitation

~ 3.3 kGy (6.5 kGy/h × 30 min)

Decomposition of NCP by γ **-ray radiation**

Pyridone derivatives would have higher resistance to γ -ray radiation.

Conclusion

It was confirmed that NCP is applicable to our proposed reprocessing process for FBR spent fuels.

Fundamental studies Engineering studies

The performances of alternative precipitants were examined.

Lower hydrophobic precipitants such as NProP and NBP give higher DFs.

NBPyr has higher resistance to γ -ray radiation, which could reduce the cost for reprocessing.

Our reprocessing process is flexible.

-Buⁿ

-Buⁿ

Precipitation test of Pu(IV) with U(VI) by NCP

U : 0.67 M Pu: 0.06 M in 2 M HNO₃

NCP (1.4 mol/mol U)

Possible Mechanism of NCP Decomposition

Solubility of uranyl precipitant in nitric acid solution

A precipitant with higher precipitation ability (lower solubility) and higher decontamination ability would solve the problems.

Resistance of NCP to Radiation

NCP $\xrightarrow{\alpha}$ and γ -rays radiation Decompose?

Does NCP have enough Resistance under *γ***-ray radiation?**

(>3.3 kGy)

Precipitation Ratios of Uranyl Ion by NCP in nitric acid (3M)

[UO ₂ ²⁺] (M)	<i>T</i> (°C)	[NCP]/[UO ₂ ²⁺]	Precipitation ratios (%)
0.3	25	2.1	96.0
0.3	25	3.1	99.3
0.3	25	4.2	99.8
0.3	50	2.1	89.9
0.3	50	3.1	98.6
0.3	50	4.2	99.5

U(VI) can be recovered by NCP with high yield.

Pre	cipitation ra	tios of UO ₂ ²⁺	by NCP in 3M HNO ₃
•	[UO ₂ ²⁺] (M)	[NCP]/[UO ₂ ² +]	Precipitation ratio (%)
		1.5	66.0
	0.0	1.8	80.7
	0.9	2.2	98.8
		3.2	99.9
		2.1	96.3
		3.1	99.4
		4.2	99.8
		5.2	99.8
	0.1	1.9	89.4
		2.8	97.5
-		3.8	99.2

Solubility of UO₂(NO₃)₂(NCP)₂ precipitate

A Simple Reprocessing Process for Spent FBR Fuels Using NCP

Direct recovery of U and Pu mixture to satisfy a high Pu content in MOX fuel from nitric acid solution of spent nuclear fuels

Pu and U are precipitated together. \longrightarrow High nuclear proliferation Whole process is in HNO₃ solution. \longrightarrow Simple and economical NCP consists of C, H, O, N. \longrightarrow Fully combustible