COE-INES International Symposium, INES-1

Cost Evaluation for Centralized Hydrogen Production

Hidetoshi Karasawa Power & Industrial Systems R&D Laboratory Hitachi Ltd.

- The next fuel should be environment-friendly, lasting available, and economically advantageous.
- Hydrogen is a promising fuel. The ideal source is water.
- Water can decompose by thermo-chemical methods or electrolysis.
- Nuclear power can provide both heat and electricity.

Hydrogen Usage

Usage	Fuel cell type	H ₂ demand by 2030 $(10^9 \text{Nm}^3/\text{y})$	H ₂ supply from by- products (10 ⁹ Nm ³ /y)	Alternative fuel
Fuel cell vehicle	PEFC	17	37	-
Stationary fuel cell	PEFC/ SOFC	29		Natural gas, Coal gas

Mass production of hydrogen using nuclear power for fuel cell vehicles was considered.

- To optimize thermal power of a nuclear plant for hydrogen production by comparing
 - cost of water decomposition with that of steam reforming of methane, and
 - refueling cost for transportation with that of gasoline.

Cost Evaluation Method

Hydrogen supply cost = Production cost + Delivery cost + Refueling cost

Cost = Fixed cost + Variable cost

where

Fixed cost = (Capital Cost*) x (Capital Rate)

Variable cost = Fuel Cost (such as methane, water) + Utilities (such as electricity and water) + Labor Cost

[Variable cost = (Capital Cost) x (Capital Rate)]

*A plant construction fee was excluded because of wide variability depending on a construction site.

Item	Off-site Eqipments	On-site Equipments
Life Time(y)	10.0	8.0
Depreciation (%)*	9.0	11.3
Property Tax(%)	1.4	1.4
Insurence (%)	0.6	0.6
Repair(%)	3.0	3.0
Remuneration (%)	2.5	2.5
General Control Fee(%)	1.0	1.0
Capital Rate (%/y)	17.5	19.8

*Assuming a remaining capital cost of 10 %

Comparison of Cost

Hydrogen = F	Production	+ Delivery	+ Refueling
Supply Cost C	Cost	Cost	Cost at station
	IS method Electrolysis	-Trailer -Tank lorry -Pipeline	as a function of thermal power of nuclear plants (15-3000 MWt)
<u>Cost target 2;</u>	f Cost tar	<u>get 1;</u>	e
Refueling cost of	Cost of	the steam	
gasoline	reformin	ng of methan	

Here the capacity of station is assumed to be 300 Nm³/h, which is equivalent to one third of thermal energies sold at a gasoline stand. The efficiency of a fuel cell vehicle is about three times higher than that of a gasoline vehicle.

Hydrogen Production Cost by Steam Reforming

<u>Ammonia plant*</u> capital cost; 27 G¥ capacity; 200,000 m³/h Assumption

operation rate; 90 % utility fee; 1.6 % labor fee; 0.7 % methane; 1.8 ¥/Mcal

Hydrogen production $cost = 12.8 \text{ }\text{W}/\text{Nm}^3$

 CO_2 fixation cost; 30 \$/t- CO_2 & 120 ¥/\$

Hydrogen production $cost = 15.8 \text{ } \text{/Nm}^3$; Cost target 1

*NEDO, NEDO-WE-NET-9731, 1998

Hydrogen Production Cost for IS Method

<u>IS plant*</u> capital cost; 79 G¥ capacity; 4200 mol/s

*Brown, L.C., et. al., GA-A24266(2003)

Cost Comparison for IS Method

- Thermal power >3000 MWt
- Thermal efficiency of IS method > 0.5
- Heat cost < 1.29¥/kWt/h (3¥/kWe/h)

Thormol	Thermal Efficiency; 0.45		Thermal Efficiency; 0.5		Thermal Efficiency; 0.55				
Power	Heat Cost(Yen/kWh)		Heat Cost(Yen/kWh)			Heat Cost(Yen/kWh)			
(MWt)	2	1.65	1.29	2	1.65	1.29	2	1.65	1.29
15	49.73	46.97	44.14	46.88	44.40	41.85	44.48	42.23	39.90
30	42.62	39.86	37.03	40.03	37.55	34.99	37.85	35.60	33.28
60	37.04	34.28	31.45	34.65	32.17	29.62	32.65	30.40	28.08
100	33.72	30.96	28.12	31.45	28.96	26.41	29.55	27.30	24.97
300	28.29	25.53	22.70	26.22	23.73	21.18	24.50	22.24	19.92
600	25.80	23.04	20.20	23.82	21.33	18.78	22.17	19.92	17.59
1000	24.31	21.56	18.72	22.38	19.90	17.35	20.79	18.53	16.21
3000	21.89	19.13	16.30	20.05	17.57	15.01	18.53	16.27	13.95

Cost target 1; 15.8 ¥/Nm³

Hydrogen Production Cost for Electrolysis

<u>Electrolysis plant*</u> -capacity; 300, 3000, 32000 kWe -PEM electrolysis

Assumption

(capital cost) = $A*(power ratio)^{0.67}$ operation rate; 90 % labor fee; 0.7 % water; 200 ¥/t

*NEDO, NEDO-WE-NET-9908(2000)

Cost Comparison for Electrolysis

- Thermal power > 600 MWt
- Electric cost < 3 ¥/kWe/h

Thermal	Gei	neration Co	st(Yen/kWh)		
(MWt)	5.9	5	4	3	
15	34.28	30.41	26.11	21.81	
30	32.48	28.61	24.31	20.01	
60	31.06	27.19	22.89	18.59	
100	30.20	26.33	22.03	17.73	
300	28.77	24.90	20.60	16.30	
600	28.11	24.24	19.94	15.64	
1000	27.71	23.84	19.54	15.24	
3000	27.04	23.17	18.87	14.57	

Cost target 1; 15.8 ¥/Nm³

Delivery Cost

	Shipping facility	Capital cost	Capital rate
Trailer	Power of 0.65 based on the	18 M¥/trailer	19.5 % (10 years)
Tank lorry	Capital Cost data	51 M¥/lorry	33.0 %
			(4 years)
Pipeline	Booster; 33.6 $k \frac{Y}{(Nm^3/h)}$	360 M¥/km	17.5%
	$\frac{33.0 \text{ KT}}{100000000000000000000000000000000000$		

*NEDO, NEDO-WE-NET-0101(2002)

Trailer if distance < 50 km & thermal power < 100 MWt
Pipeline for any distance if thermal power > 1000 MWt

Refueling Cost

Capital cost evaluation using a progress ratio*

 $Y = A^*X^{-B}$

where Y: station cost after X-1 stations has been constructed

- A: cost of the first station
- B: cost reduction ratio

Assumption

- X=10000 after 2030
- capital rate; 19.8 %
- labor fee; 8.4 M¥/man

▶ 22.19 ¥/Nm³

Gas station; 15 ¥/Nm³

*NEDO, NEDO-WE-NET-0101(2002)

Cost Target 2

Assumption

- gasoline cost; 100 ¥/L
- tax for volatile oils; 53.8 ¥/L
- efficiency of fuel cell vehicles; 2.5 times higher

than gasoline cars

Cost target 2; 41.8/Nm³

Hydrogen Supply Cost for IS Method

- Thermal power > 3000 MWt - Heat cost < 1.29¥/kWt/h (3 ¥/kWe/h) - Delivery distance < 200 km (η =0.5), 250 km (η =0.55) 50 Cost target 2; $41.8 \text{ }/\text{Nm}^3$ 40 Cost (Yen/Nm³) 30 20 **refueling** 10 delivery production 0 50 100 150 200 250 300 350 400

Delivery distance (km)

Hydrogen Supply Cost for Electrolysis

- Thermal power > 1000 MWt
- Electric cost < 3 ¥/kWe/h
- Delivery distance < 200 km (3000MWt), 50 km (1000MWt)

#35-19

The hydrogen supply cost was evaluated to optimize the thermal power of nuclear plants to compete gasoline for transportation. The hydrogen production cost by water decomposition was comparable to that by steam reforming of natural gas. The refueling cost, which would be more than 50 % of the supply cost, should be reduced. Necessary conditions are shown in the table.

	Therma	Cost	Delivery distance
	I power		
IS method	>3000	Heat: 1.29 ¥/kWt/h	<200 km (η=0.5)
	MWt		<250 km (η=0.55)
Electrolysis	>1000	Electricity:	<50 km (1000 MWt)
	MWt	3 ¥/kWe/h	<200 km (3000 MWt)