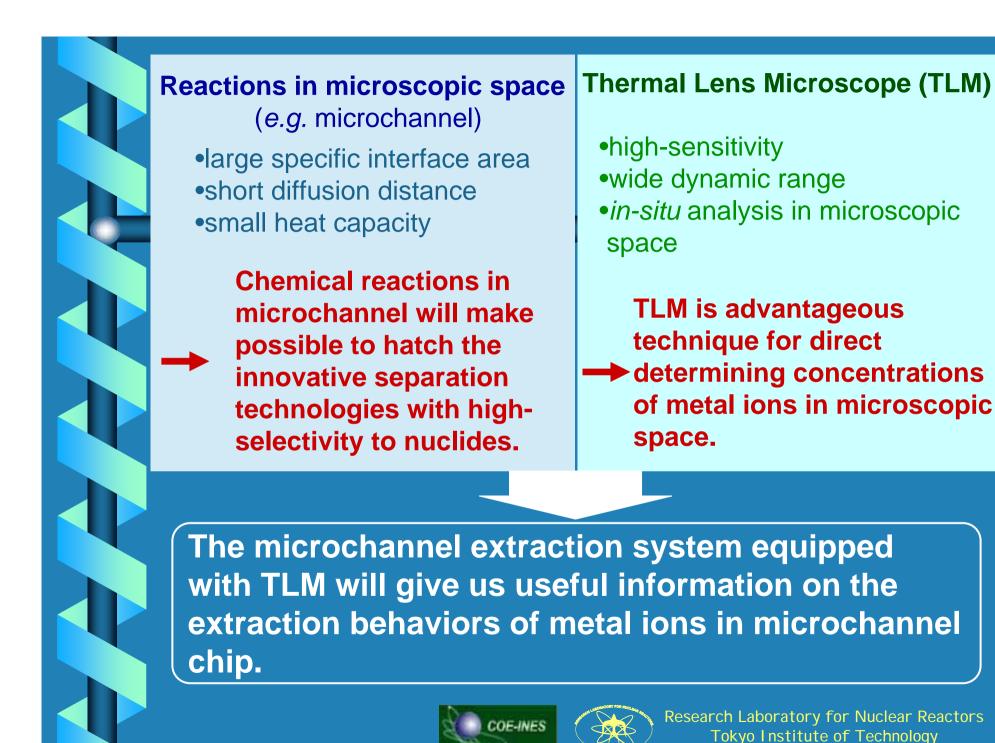
The 1st COE-INES International Symposium, INES-1 Oct. 31 – Nov. 4, 2004, Keio Plaza Hotel, Tokyo, Japan

Development of the Innovative Nuclide Separation System for High-Level Radioactive Waste using Microchannel Chip - Extraction Behavior of Metal Ions from Aqueous Phase to Organic Phase in Microchannel -

Hiroyasu Hotokezaka¹, Manabu Tokeshi², Masayuki Harada¹, Takehiko Kitamori^{2,3}, and Yasuhisa Ikeda¹

- 1. Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
- 2. Integrated Chemistry Project, Kanagawa Academy of Science and Technology (KAST)
- 3. Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo

Background

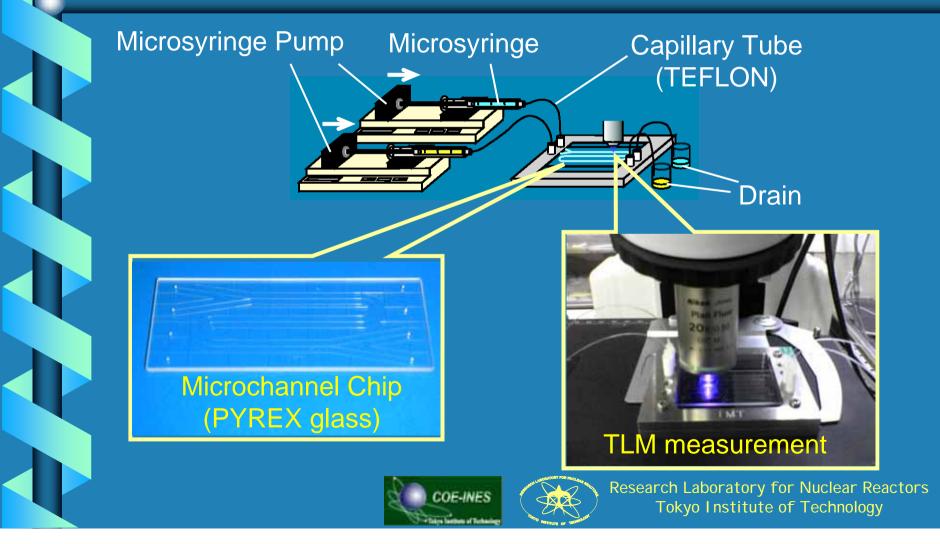

To reduce the quantity of high-level radioactive liquid wastes (HLLW) and to prevent discharge of radioactive materials into the environment...

Development of innovative separation technologies for actinides or long-lived radionuclides in radioactive wastes has been required.

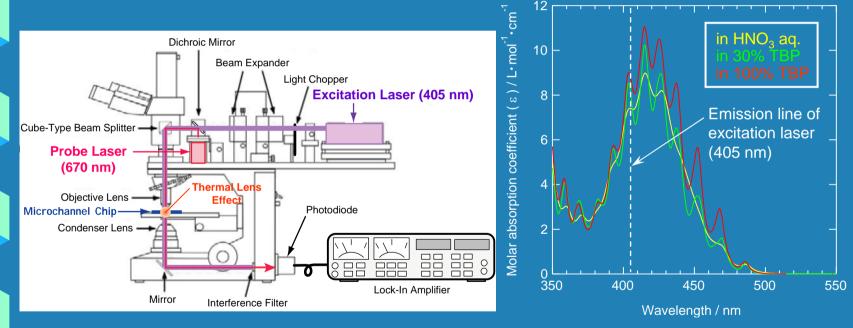
We have examined applicability of extraction using microchannel chip to nuclide separation.

Objective

To develop the innovative nuclide separation system using microchannel chip.


Subject

Extraction behavior of U(VI) from aqueous phase to tri-*n*-butylphosphate (TBP) one in microchannel.


- TLM measurements of U(VI) in aqueous and TBP samples.
- Microchannel extraction experiment of U(VI) in 3M HNO₃-TBP system.

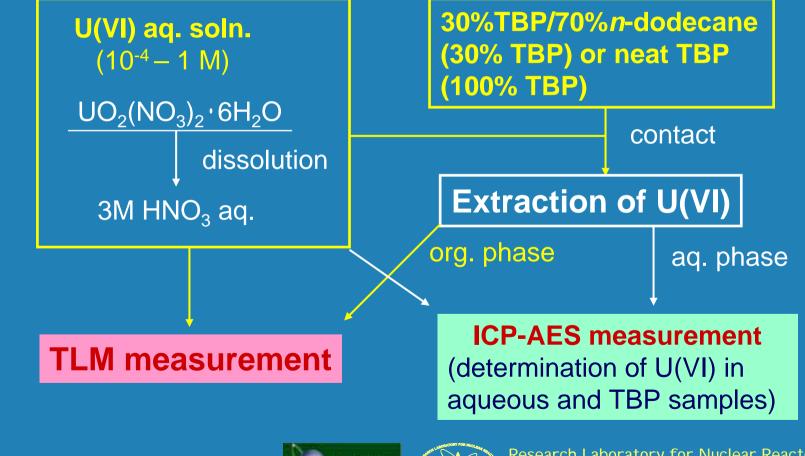
Experimental setup for extraction experiment using microchannel chip

TLM measurement system

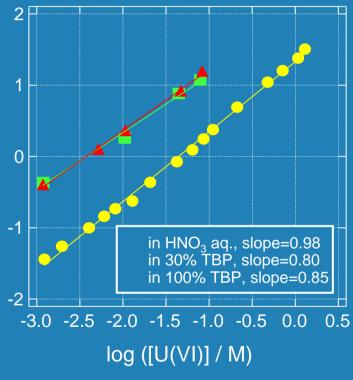
TLM measurement system

UV-Vis absorption spectra of U(VI) in aqueous and TBP solutions

COE-INES



Concentration dependence of thermal lens (TL) signal of U(VI) in aqueous and TBP phases


Experimental procedure

COE-INES

Results

signal) log (normalized Tl



Limit of detection (LOD) values of TLM and UV-Vis absorption measurements of U(VI) in aqueous and organic solutions (M)

	in 3M HNO ₃ aq.	in 30% TBP	in 100% TBP
UV-Vis	3.8x10 ⁻⁵	6.8x10 ⁻⁵	1.8x10 ⁻⁵
TLM	1.8x10 ⁻⁴	1.2x10 ⁻⁴	1.4x10 ⁻⁴

TLM measurements

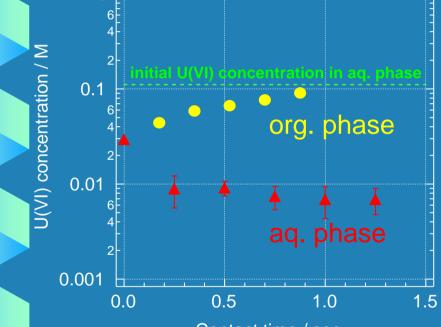
Extraction behavior of U(VI) from aqueous phase to TBP one in microchannel

Experimental procedure

aq. phase U(VI)-3M HNO₃ aq. U(VI) conc.:0.11 M flow rate:3μl/min.

TBP phase 30% TBP (4.3μl/min.) 100% TBP (2.2μl/min.) aq. phase extraction TBP phase

Contact in microchannel


channel width: 100.5µm

channel depth: 43.5µm

Contact time dependence of U(VI) concentration in aqueous and TBP phases

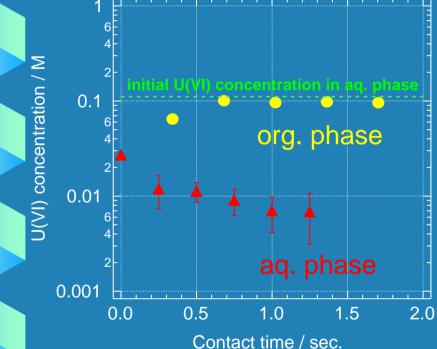
COE-INES

Results - extraction to 30% TBP phase -

Contact time / sec. Contact time dependences of U(VI) concentration in 3 M HNO_3 and 30% TBP phases


In aq. phase:

Concentration of U(VI) approaches to constant value of approximately 6.8x10⁻³ M after 1 s.


In 30% TBP phase: Concentration of U(VI) reaches approximately 9.1x10⁻² M after 0.9 s.

Extraction equilibrium was achieved in approximately 1 s.

Results - extraction to 100% TBP phase -

Contact time dependences of U(VI) concentration in 3 M HNO_3 and 100% TBP phases

In aq. phase:

Concentration of U(VI) approaches to constant value of approximately 7.0×10^{-3} M after 1 s.

In 100% TBP phase: Concentration of U(VI) reaches approximately 0.1 M after 0.7 s.

Extraction equilibrium was achieved in approximately 0.7 s.

Results - extractabilities -

Extractabilities of U(VI) in 3M HNO₃-TBP systems (%)

microchannel extraction bulk extraction

30% TBP93.896.1100% TBP93.8-

Extractability of U(VI) from 3 M HNO₃ phase to TBP one in microchannel is almost same as that in bulk liquid-liquid extraction.

Summary

- Extraction of U(VI) from HNO₃ phase to TBP one in microchannel chip can be performed in approximately 1 s with good extractability in both systems of 30% and 100% TBP.
- Extraction of U(VI) using microchannel chip can be carried out with higher extraction efficiency than in bulk extraction.
- In microchannel, extraction of U(VI) from aqueous phase to TBP one in microchannel can be achieved without adding diluents, *e.g.*, *n*-dodecane.
- By applying microchannel chip to nuclide separation system, it is expected that the separation of nuclides can be performed more selectively, efficiently, and finely than conventional separation methods.

Thank you very much for your attention.

