

Carbon Dioxide Zero-Emission Hydrogen System based on Nuclear Power

Yukitaka Kato

Research Laboratory for Nuclear Reactors
Tokyo Institute of Technology

Paper #51, 2B2 Innovative Energy Transmutation COE-INES International Symposium, INES-1 1 November, 2004, Tokyo, Japan

Contents

- Back ground: Hydrogen supply for fuel cell vehicles
- CO₂ zero-emission hydrogen career system using a regenerative reformer
- Experimental demonstration
- Evaluation of the hydrogen career system

Hydrogen for FC

-A fuel cell is environmental friendly?-

Problems of H₂ supply to a conventional fuel cell vehicle

 Compressed H₂ fuel: high-energy consumptions for production and pressurization, and explosiveness

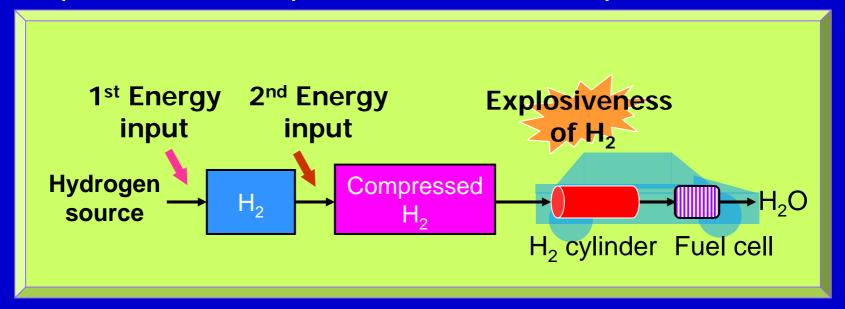


Fig. Subjects for hydrogen supply to a fuel cell vehicle

Fuel reforming for hydrogen supply to a fuel cell vehicle

Problems of H₂ supply to a conventional fuel cell vehicle

Fuel Reforming: complex structure, and CO₂ emission

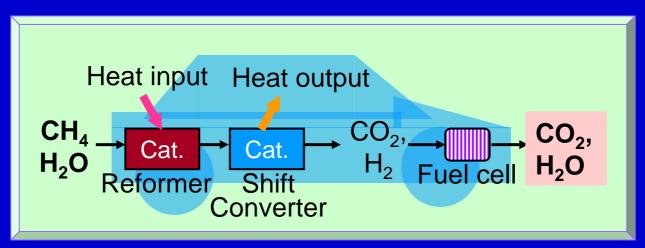


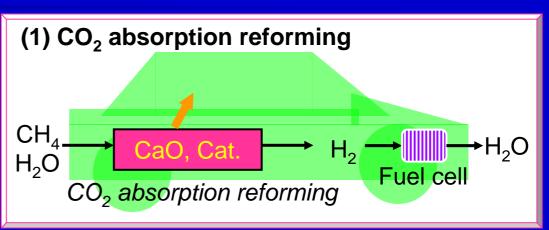
Fig. Conventional reforming system for a FC vehicle

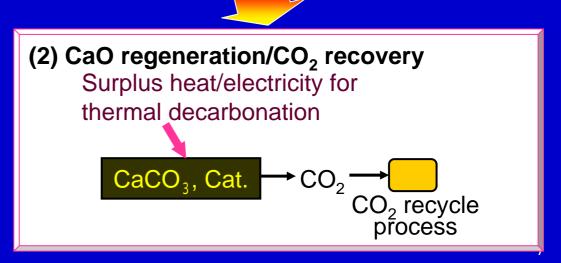
Regenerative Reforming

- -Use of chemical absorption-
- Fuel reforming for methane
 - $\bullet CH_4 + H_2O \leftrightarrow 3H_2 + CO,$
 - $CO+H_2O \leftrightarrow H_2 + CO_2$

- ΔH°_{1} =+205.6 kJ/mol
- $\Delta H^2_2 = -41.1$ kJ/mol

- CaO carbonation
 - CaO(s)+CO₂(g) \leftrightarrow CaCO₃(s), $\Delta H^{\circ}_{3} = -178.3 \text{ kJ/mol}$
- Regenerative reforming
 (CO₂ absorption reforming, self-heating)
 - CaO(s)+CH₄(g)+2H₂O(g) \leftrightarrow 4H₂(g)+CaCO₃(s), ΔH_4^0 =-13.3 kJ/mol


Non-equilibrium reaction for hydrogen production


- Based on fuel reforming
- Separation processes for non-equilibrium reforming
 - Separating CO₂ from system using chemical absorption
- Merit of non-equilibrium reforming
 - Enhancement of hydrogen production
 - Use of exothermic reaction heat for endothermic reforming
 - Drop in reforming temperature
 - CH4 steam reforming: 700°C -> 500°C
 - Enhancement of high-carbon numbers reactant reforming
 - Kerosene, C₂H₅OH and higher hydrocarbon
 - Reuse of carbon dioxide
 - CO₂ zero-emission system
- Link with nuclear power system

CO₂ zero-emission FC vehicle using the regenerative reformer

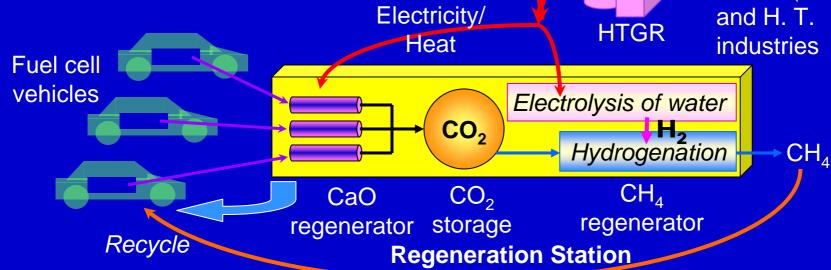
- Regenerative reforming
 - CO₂ recoverable, self heating, and simple reforming system
 - thermally regenerative
- CO₂ zero-emission FC vehicle
- Safety H₂ carrier system under low-pressure and high-density

CO₂ zero-emission hydrogen career system

Hydrogen system driven by surplus electricity and heat from nuclear power plants, and unstable energy.

Safe and compact hydrogen transportation

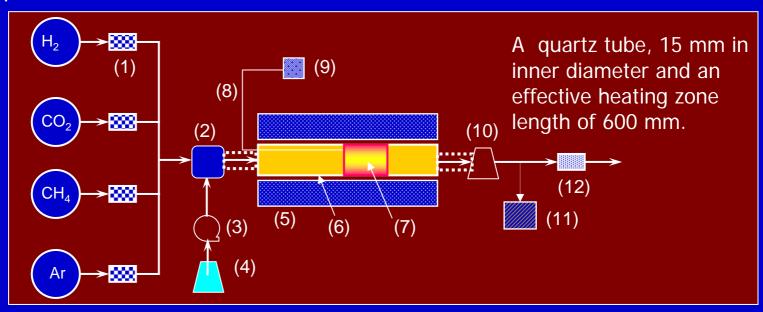
■CO₂ zero emission energy system


Renewable energy system

Electricity/
Heat

HTGR

Electricity from nuclear power plants


 Heat from hightemperature gas reactor(HTGR) and H. T. industries

Experiment of the regenerative reformer

- Demonstration of the possibility of the regenerative reforming system
- For polymer electrolyte fuel cell (PEFC) operated at a hydrogen pressure of less 0.3 MPa.

(1) flow meter, (2) evaporator, (3) micro-feeder, (4) water reservoir, (5) electric furnace, (6) reactor tube, (7) reactor bed, (8) thermocouple, (9) furnace heating controller, (10) liquid-gas separator, (11) gas chromatograph, (12) soap flow meter

CO₂ absorption reforming

- During the initial 60 min, hydrogen production was higher than the equilibrium concentration of conventional reforming.
- Charged CaO absorbed well CO₂
 by carbonation. CO₂ < 1%
- CO was removed, <1%
- Low-temperature reforming (conventional reform. temp. > 700°C)

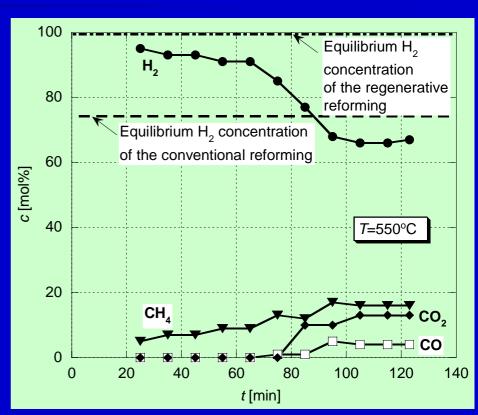


Fig. Temporal change of effluent composition of the regenerative reformer at 550°C

(a) regenerative reformer (RGR)

CO₂ removal from reforming gas

 Effluent CO₂ concentration from RGR at 550°C was less than 1%.

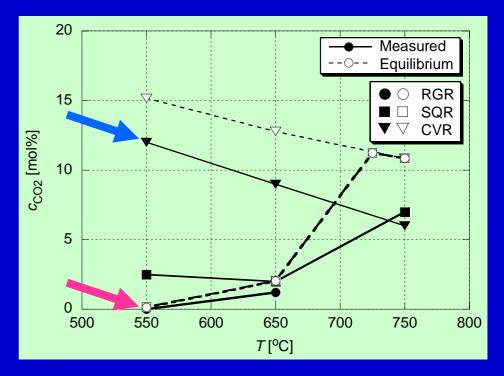
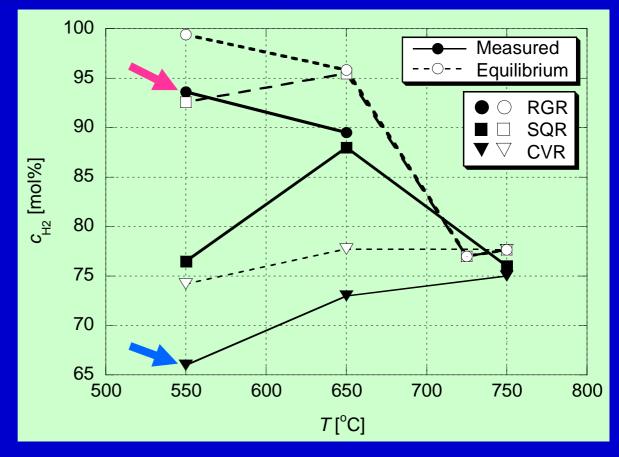



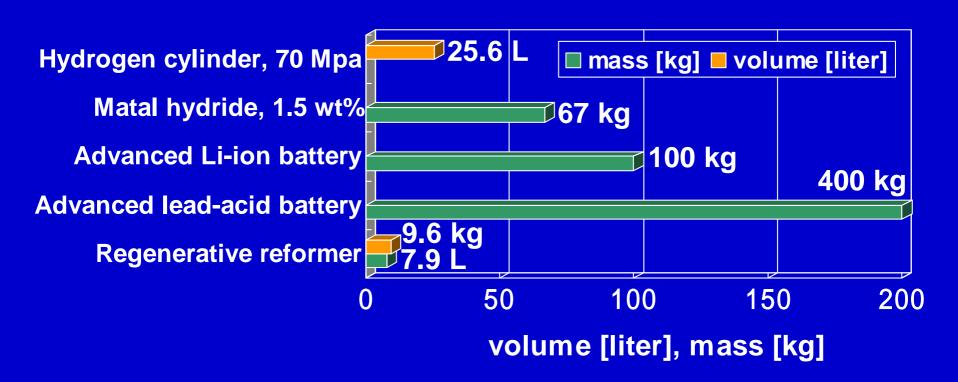
Fig. Effect of bed temperature on effluent carbon dioxide concentration of the reformer comparing with other type reformers.

H₂ productivity

94% of H₂ production was measured by the RGR at 550°C.

Effect of bed temperature on hydrogen production concentration of the reformers.

Estimation of a zero emission vehicle


- 1 kg of H₂ in order to drive for 100 km
- 7.46 kg (9.04 liters) of CaO was required for the RGR.

SSR-FC Vehicle			
Viehcle mileage	km	100	
Hydrogen requirement	kg	1.0	
Hydrogen production conc	mol%	94	
CaO requirement mass	kg	7.94	
CaO requirement volume	liter	9.62	
Recovered CO ₂	kg	5.5	

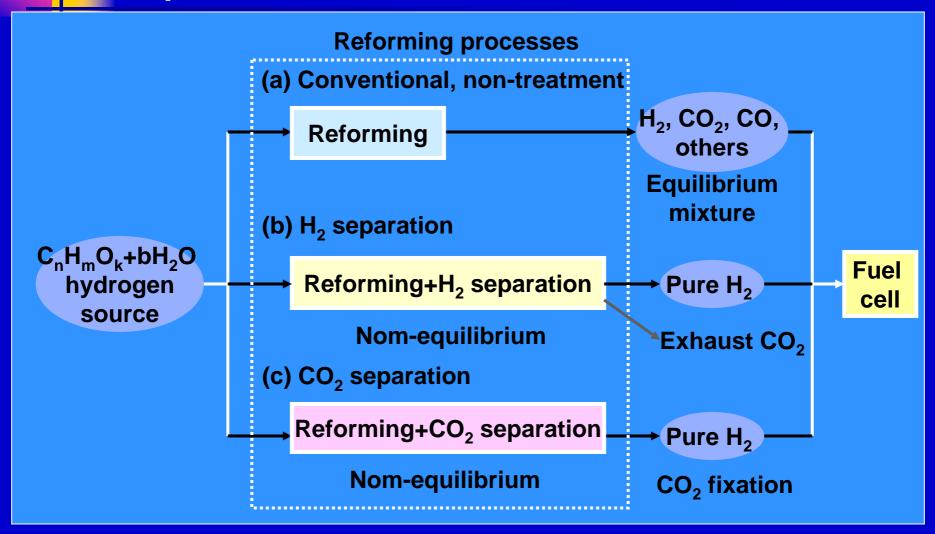
Comparison between H₂ systems

Table: Scale of energy storage facilities for 100 km mileage, 14.7 kWh, 500 mol-H₂ (= Petroleum of 4 L, 2.8 kg)

Estimation of the zero-emission hydrogen career system

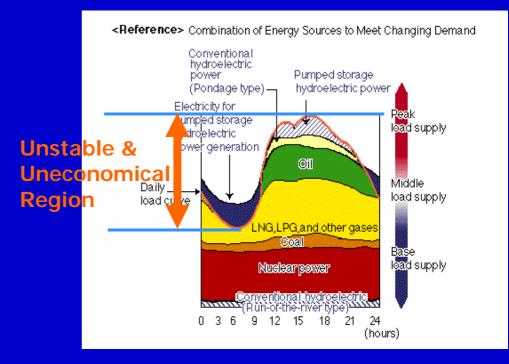
- Nighttime surplus electricity of 1 GW for 8 hours was used for the regeneration at the regeneration stations.
- The RGR packages of 1.3 million pieces/day are able to be regenerated in the stations.
- CO₂ of 7.1×10³ ton/day is expected to be recovered from the stations.

Power plant		
Power plant output	GW	1
Night time operation duratio	rh	8
Total Electricity amount	GWh	8
	GW	2.88E+04
FC Vehicle		
Viehcle mileage	km	100
Hydrogen requirement	kg	1
Hydrogen production conc	mol%	94
CaO requirement mass	kg	7.94
CaO requirement volume	liter	9.62
CO2	kg	5.5
CO2	mol	125
dH for regeneration	kJ/mol-CO ₂	178
Regeneration station		
Requirement reaction heat	kJ/piece	2.23E+04
Cell piece	pieces	1.29E+06
CO2 amount	kg	7.12E+06
	m3(STP)	3.62E+06

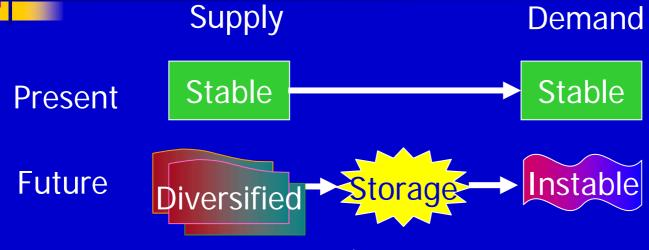


Conclusions

- The regenerative reformer was applicable to a practical CO₂ zero-emission reforming with safety hydrogen supply.
- The required amount of CaO for the reformer was expected to be small enough comparing with other hydrogen storage system or batteries.
- The system can utilize surplus electricity generated from renewable energy system and nuclear power plant.
- Electricity of 1 GW for 8 h can regenerate 1.3 million of reforming packages, and recover 7.1 ton of CO₂.
- The hydrogen career system using the regenerative reformer would widen need of those power plants because the system realizes new vehicle system of total CO₂ zero-emission.
- The hydrogen career system also contributes to load leveling of power plant operation.


Shifting into non-equilibrium by separation

Unstable Operation

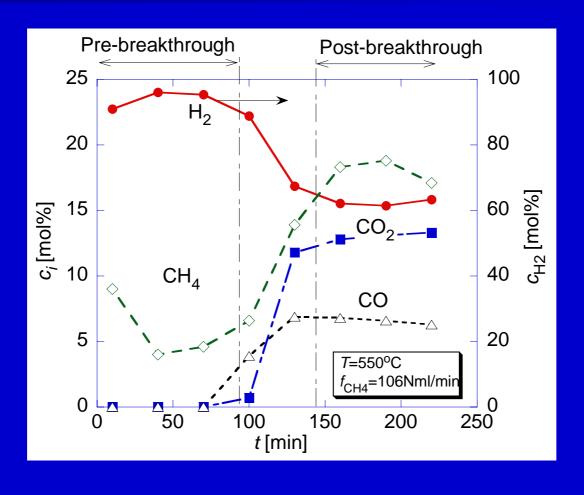

- -Load leveling for Economical Plant Operation-
- Load change and unstable operation
 - Low-annual operation rate
 - Uneconomic
- Load leveling for 100% operation
 - Energy storage
 - Energy conversion Fig. A daily load change in a summer day in Japan Tokyo Electric Power Co. http://www.tepco.co.jp/

Peak Electric Load (2001)
Japan=181 GW
Tokyo area=64 GW (24 Jul.), 51 GW (15 Jan.)₁₈

Diversification of energy supply and demand

Decentralization/ Renewable energy

Daily and Seasonal change


Fig. Forecast of the change of energy flow pattern

- Future society needs high-efficient tech. of,
 - Energy storage
 - Energy transportation
 - Energy conversion

Use of chemical reaction

