Pb-Bi Cooled Direct Contact Boiling Water Small Reactor

INES-1, Tokyo, Japan, November 1-4, 2004,

by M. Takahashi¹, S. Uchida², K. Hata³, T. Matsuzawa², H. Osada², Y. Kasahara², Y. Yamada², N. Sawa², Y. Okubo², K. Koyama², M. Hirabayashi⁴, K. Ara⁴, T. Obara¹, and E. Yusibani⁵ ¹Tokyo Institute of Technology (Tokyo Tech.) ²Advanced Reactor Technology Co., Ltd. (ARTECH) ³Nuclear Development Corporation (NDC) ⁴Japan Nuclear Cycle Development Institute (JNC)

Contents

- 1. Energy park and small reactor
- 2. Motivation
- 3. Project
- 4. Conceptual design of PBWFR
- 5. Lift pump in chimney
- 6. Removal of Pb-Bi mists and polonium
- 7. Concluding remarks

FP: Fission Products

Reactors in Park and Sites

Outside of Park (Site)

Requirements of Innovative Small Reactors

Safe

Economic

Proliferation resistant

Coolant: Inactive with air, water Void reactivity: Negative Simple or Reduction of material e.g., Elimination of - Pumps - Steam generators - Intermediate loop Efficient in uranium utilization Breeding ratio > 1 Long life core > 10-15 yrs

Direct Contact LFR (PBWR)

proposed by J. Buongiorno, N. E. Todreas, et al., at ANS Winter Meeting, Long Beach, USA, in 1999.

Economy

Reduction of component material

CRDM ____Stea∎ Roof Deck Stand Pipe Pump 0000 Vessel Wall Cooling Shell Plenum Separator Steam Generator Reactor Vessel Core Barrel Core Support Plate ¢3200 *50MWe* *****5200

Steam Lift Pump (PBWFR) Ø5.1mx14.5mH Forced Convection φ5.2mx15.2mH

Pb-Bi Cooled Direct Contact Boiling Water FR (PBWFR)

Research Projects for Development of Innovative Nuclear Technologies by MEXT (FY2002-2004)

Challenges of PBWFR Technology

1) Conceptual design

- Long life core, void reactivity and specific structural design,
- Safety evaluation.

2) Material and chemistry

- Control of oxygen potential in Pb-Bi,
- Compatibility of core and structural materials with Pb-Bi,
- Measure of Po transport into steam system.

3) Hydraulics

- Lift pump performance,
- Suppression of carry-over of Pb-Bi mist/aerosol into steam system,
- Suppression of carry-under of steam bubbles into downcomer,
- Ultrasonic flow-meter.

4) Thermal effect

- Direct contact steam generation performance,
- Flow instability and vapor explosion.

Phenomena

Conceptual Design of 150MWe PBWFR

		_
Thermal power	450 MWt	
Core inlet temp.	310 °C	
Core outlet temp.	460 °C	
Max. cladding temp.	620°C	
Pb-Bi flow rate	73970 t/h	
Steam pressure	7 MPa	C
Steam temperature	296 °C	
Supply water temperature	220 °C	
Steam flow rate	863 t/h	С
Burnup	110 GWd/t	
Breeding Ratio	1.05	
Refueling interval	15 yrs	

Core Design

- Inner Core Fuel AssemblyOuter Core Fuel Assembly
- Pb-Bi Shielding
- Control Rod
 - Total

	Core	Туре	Homogeneous
			core
		Zones	Two enriched
			zones.
	Fuel		Pu-U nitride
			(N ¹⁵ 100%)
	Core	Diameter	267 cm
		Height	100 cm
	Blanket	Radial	Non
		Upper axial	30 cm
36		Lower axial	Non
42	Pu	Inner zone	11.5 w/o
30	enrichment	Outer zone	15.8 w/o
13	Contents of U ²³⁵		0.3 w/o
121	in core fuel		

Fuel Assembly

Burn-up reactivity loss		1.5 %dk/kk'/15 yrs
Breeding ratio		>1.05
Void reactivity	Core	\$ 7.4 (EOL)
	Core, axial blanket and plenum	\$ 3 (EOL)

Fuel Assembly

Туре	Duct type
Spacer type	Grid spacer
Pellet smear density	80 %
Number of rods	271
Outer diameter of cladding	12.0 mm
Pitch of rod arrangement	15.9 mm
Face distance of wrapper tube	272.0 mm

Pitch of assembly arrangement		275 mm
Volumetric fraction	Fuel	39.8 %
	structure	14.1 %
	coolant	46.1 %
Friction pressure drop in fuel bundle		0.04MPa

Additional Consideration for Low Void Reactivity Core

- Safety design demands negative void reactivity for the case of core and upper plenum region voided from considerations of core void pattern of PBWFR.
- Void reactivity (core +upper plenum) of core mentioned above is +3\$.
- Considerations of core specification adequate for safety demands have been performed by core height adjustment with same core layout.

Relation of Core Height and Coolant Void Reactivity

Specification of Low Void Core

Item	Reference Core	Low Void Reactivity Core
Core Residence Time (years)	15 -	→ 10
Core Height (cm)	100 🗕	→ 75
Core Equivalent Diameter (cm)	267	278
Fuel Pin Diameter (mm)	12	12
Fuel Pin Pitch (mm)	15.9	15.2
Pin Number per Assembly (-)	271	331
Assembly Length (mm)	3,625	3,205
Burn up Reactivity Loss (% Δ K/kk')	1.53	0.9
Breeding Ratio (-)	1.122	1.17
Void Reactivity(Core) (\$)	7.4	5.6
Void Reactivity(Core+Upper Plenum) (\$)	3.0 —	-5.3

Structure in Reactor Vessel

Reactor Structure

Core Support Structures and Core Barrel

Hung from upper flange in order to pull up when refueling
Supported horizontally by earthquake-proof pads.

Control Rod Guide Tubes

- Guide Control Rods
 from Head Plate to Core
- Penetrate Upper Structures, such as Dryer, Separator and Chimney.
- Supported by penetrations
 (CRGTs maintain CR insertion anytime)

Flow Allocation

Inner Core: 1,2 Outer Core: 3,4,5

Power of Fuel Rod and Max. Cladding Temperature

P: Power of fuel rod (kW), T: Cladding temperature (°C); Initial: 0 days, Middle: 2737 days, Final: 5475 days

	Region	Assemblies	Flow rate		Initial	Middle	Final
			(kg/s)				
Inner	1	18	272	Ρ	18.4	26.2	31.1
core				Т	496	571	618
	2	18	249	Ρ	20.6	24.9	28.7
				Т	536	579	619
Outer	3	18	264	Ρ	30.3	29.2	24.9
core				Т	619	608	563
	4	12	247	Ρ	28.4	23.5	18.5
				Т	619	565	510
	5	12	225	Ρ	26.1	23.2	18.4
				Т	619	585	527

Plant System

Heat balance

Performance of lift pump in chimney

Requirement in sector-type chimney

- Uniform distribution of void fraction -High void fraction, i. e.
 - Low slip ratio of steam velocity to Pb-Bi velocity

One-dimensional analysis of lift pump performance

Balance of head and pressure loss for Pb-Bi circuit

<

Total pressure	loss 0.156MPa
Bundle	0.081MPa
Assembly	0.020MPa
HD plate	0.029MPa
Chimney	0.025MPa
Down-comer	0.00068MPa

Total lift pump head 0.198MPa Chimney height 3,000mm Average density 3,788kg/m³ (Void fraction 0.645)

Experiment of Pb-Bi-Water Direct Contact Boiling Two-phase Flow

Pb-Bi-Water Direct Contact Boiling Two-phase Flow Test Apparatus

Pb-Bi-steam 2-d two-phase flow in chimney

Void fraction

Key issues: -Suppression of carry-under of bubbles -Estimate of bubble diameter

Bubble diameter

Analysis of Pb-Bi-steam flow

Removal of Pb-Bi mists

Estimate of Pb-Bi mists and Pollonium

Mist flow rate

Polonium

Removal efficiency	Separator 95.5%, Dryer 2.6%	Production	1.5×1017Bq
Flow rate	4.8x10 ⁻⁴ kg/s or 15.2 t/v	Concentration in Pb-Bi	1.06×10 ¹¹ Bq/k g
Ratio of mist flowrate to	2.0x10 ⁻⁴ % lower than 2.0%-	Transport into steam system	1.1 <i>×</i> 10⁰Bq/s
steam flowrate	5.0% in LWR		

Requirement

- 1) Additional precipitation device
- 2) Ceramic coated turbine blades

Steam flow in dryer

Flow velocity distribution [m/s]

Flow velocity vector

Droplet measurement and Electro-static precipitation

Design consideration is for a representative PBWFR condition

Comparison	PBWFR	Experiment	
Velocity	0.6 m/s	up to 0.1 m/s	
Medium	Steam	Argon Gas	
Pressure	7 Mpa	0.1 Mpa	
Temperature	296 C	180 C	
Flowrate	329400 L/mnt	0.5 – 2 L/mnt	

A design concept of PBWFR has been formulated with design parameters identified, and will be modified by the results of the following studies:

- Two-phase flow test in the chimney for structure design of chimney with gas lift pump,
- Pb-Bi droplet removal test for the reduction of carry-over and Po transport rate into steam system,
- Pb-Bi-water direct contact boiling test for stable boiling and Pb-Bi circulation under practical conditions,
- Corrosion/steam injection tests for corrosion-resistant steels, oxygen control/measurement method and the other Pb-Bi technology.