The First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004

Super Critical CO₂ Gas Turbine Cycle FBRs

Yasuyoshi Kato Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

Program Title : Innovative Nuclear Energy Systems for Sustainable Development of the World

- 1. Advanced nuclear energy systems
 - a) Advanced reactors
 - CO₂ gas turbine reactors
 - Pb-Bi cooling fast reactors
 - **b)** Advanced partition and transmutation
 - c) Advanced energy utilization
 - Waste heat recovery system
 - Hydrogen production
 - Electricity and heat storage
- 2. Development of human resources

Use of Na as Coolant in FBRs

Advantage:

- Efficient heat removal of tight fuel pin lattice.

Disadvantages:

- 1) Positive sodium void reactivity.
- 2) Hazardous (chemical) reaction with water or air in the event of sodium leakage.
- **3**) Higher capital cost mainly ascribed to the need of extra intermediate cooling loops relative to light water reactors.

History of Gas Cooled-Reactors

*1: Start of operation, *2: Rated full power operation

Comparison of Cycle Efficiency with Other Cycles

Na-Cooled Steam-Turbine Cycle System (Monju, CRBRP)

a) Indirect Cycle System

Recuperator

b) Direct Cycle System

Advantages

- No secondary Na loop
- •Smaller & simpler turbine system
- Utilization of Monju Na R&D
- •Smaller core size reference to direct cycle systems

Advantages

- No primary & secondary Na loops
- Smaller & simpler turbine system
- Lower void reactivity

Disadvantages

- Larger core size reference to indirect cycle systems
- •R&D on core cooling and T&H in a reactor vessel

CO₂ Gas Turbine FBRs

In the Past Elevation of turbine inlet temperature Turbine Work

Enhancement of Cycle Efficiency

Temperature °C →

Critical State of CO₂

Compressibility factor with P_r and T_r

Compression Work of Real Gas

Isentropic compression work *W*:

$$W = -\int V \, dP = -\int zRT \, dP/P,$$

where V=volume, P=pressure,

R=gas constant,

z=compressibility factor= $f(T_r, P_r)$,

 T_r =reduced temperature= T/T_c ,

 T_c =critical temperature,

 P_r =reduced pressure= P/P_c ,

 P_c =critical pressure.

At the critical point, the *z* value takes an extremely low value as low as about 0.2 or a real gas is five times more compressible than an ideal gas.

Cp Pressure & Temperature Dependency

Partial Pre-Cooling Cycle

Temperature & Pressure Dependency

Cycle Efficiency in Partial Pre-Cooling Cycle

Direct Cycle Core Parameters

Materials Coolant Fuel Absorber (¹⁰ B = 90%) Structural	CO ₂ UO ₂ -PuO ₂ -NpO ₂ B ₄ C 316 SS
Pu Enrichment (atomic %) Inner Core/Outer Core	14.0 / 19.0
Core Geometry (mm) Effective Core Height Equivalent Diameter	150 2776
Blanket Thickness (mm) Axial/Radial	200 / 334.6
Subassembly Geometry (mm) Pitch/Duct Thickness	182/3.5
Core Fuel Pin Number per Subassembly Outer Diameter (mm) Cladding Thickness (mm) Spacing Pitch (mm)	391 6.5 0.35 Grid Spacer 8.45
Core Fuel Volume Ratio (%) Fuel Structural Material Coolant Gap	34.05 17.25 46.74 1.96

²³⁷Np-²³⁹Pu, ²³⁵U Conversion Chain

Burnup Performance with ²³⁷Np Content

Control Requirement and Reactivity Worth

Items	Present GCFR (243.8 MWe)		Demonstration FBR (660 MWe)	
	Primary	Backup	Primary	Backup
Number of Control Rods	4	3	18	6
Control Requirement (%⊿k/kk')	0.6	0.6	1.3	1.3
Burnup Reactivity	0.3	-	3.1	-
Uncertainty	1.0	-	1.4	0.4
Allowance for Operation	0.3	-	0.2	-
Total	2.2	0.0	0.0	1./
Reactivity Worth Available (%⊿k/kk')	2.7*	3.2	8.0	2.4
Shutdown Margin (%⊿k/kk')	0.5	2.6	2.0	0.7

* Worth of one stuck rod.

Direct Cycle Core Design

Core Configuration

Void Reactivity

- 0.61% **\(\Lambda k/kk')**
- Reactivity in the case of depressurization from 12.5 MPa to atmospheric pressure.

Hot Spot Temperature of Cladding

> 700°C (Maximum permissible temperature of 316SS)

	Hot Spot Factors		
Items	Coolant	Film	Cladding
Direct			
Power measurement	-	1.03	1.03
Power distribution	1.08	1.08	1.08
Inlet temperature	1.02	-	-
Subchannel flow	1.02	-	-
Total	1.12	1.11	1.11
Statistical			
Flow distribution	1.02	-	-
Coolant property	1.02	1.30	1.03
Manufacturing	1.03	1.04	1.06
Pellet eccentricity	-	1.16	1.20
Total	1.04	1.34	1.21
Grand Total	1.16	1.49	1.34

Gas Turbine Volume (≈ Weight or Cost)

Basic Plant Design Conditions

Design parameters		Direct Cycle	Indirect Cycle
Power	Thermal (MW)	600	
Output	Efficiency (%)	40	40/42
Core Cooling System	Coolant	CO ₂	Na
	Core Inlet/Outlet Temperature (°C)	388/527	425/550
	Pressure (MPa)	12.5	-
CO ₂ Gas Turbine Inlet	Turbine Inlet Temperature (°C)	527	
	Pressure (MPa)	12.5	12.5/20

Direct Cycle Plant Design - designed by Fuji Electric for TIT

HPC=High Pressure Compressor LPC= Low Pressure Compressor

Direct Cycle Plant Design - designed by Fuji Electric for TIT

HPC=High Pressure Compressor LPC= Low Pressure Compressor

Indirect Cycle Plant Design- Loop Type (IHX-Pump Combined)

- designed by ARTECH for TIT

Indirect Cycle Reactor Structure Design - designed by ARTECH for TIT

Compact Heat Exchangers Development History

What is the PCHE?

- ✓ Fluid flow channels are etched chemically on metal plates.
 - Typical plate: thickness = 1.6mm,

width = 600mm, length = 1200mm,

- Channels have semi-circular profile with 1-2 mm diameter.
- ✓ Etched plates are stacked and diffusion bonded together to fabricate a block
- ✓ The blocks are then welded together to form the complete heat exchanger core

Construction of PCHEs

Plate stacking

Diffusion bonding

Advantages of PCHE

Photo-etching technology:

 \rightarrow Micro channels with smaller hydraulic diameter D_h

⇒ Pressure capability > 50 MPa.

 \Rightarrow Compact size (*L*) or higher efficiency (98%).

 $j = (D_h/4L) \operatorname{Pr}^{2/3}N,$

where N=NTU (<u>N</u>umber of <u>T</u>hermal <u>U</u>nits)= $(T_{out}-T_{in})/\Delta T_{LMTD}$.

→ No plate-fin brazing:

⇒ Manufacturing cost reduction.

Diffusion bonding technology:

→ Maintain parent material strength:

⇒ Temperature capability up to 700°C.

→ No braze, flux or filler:

⇒ Corrosion resistant.

PCHE T-H Test Loop for CO₂ Cycle GCRs

New PCHE Model in TIT

Parameters		HEATRIC Model	TIT Model	
Flow Channel		Zigzag	**	
Fluid		CO ₂		
PCHE Size (mm)	Width/Length		10.3/121	
Metal Plate	Material/ Thickness (mm)		316 SS/1.6	
Fin Geometry	Angle (degree)/ Width (mm)		38/0.8	
Channel Geometry (mm) Width/Depth		1.9/0.94		
Flow Rate (kg/s) Hot/Cold Side		6.9x10 ⁻⁴ /1.3x10 ⁻³		
Coolant Inlet Temp. () Hot/Cold Side		553/382		
Coolant Outlet Temp. () Hot/		Hot/Cold Side	439/494	438/496
Overall Heat Transfer Coefficient * (w/m ² K)		1134 (0.96)	1187 (1)	
Pressure Drop* (kP/m) Hot/Cold Side		336/312 (5.8/6.5)	58/48(1/1)	

* Values in brackets are normalized to unity in the case of the TIT model.

** Now applying for a patent.

To be presented at HEAT-SET 2005, April 5-7, 2005, Grenoble, France.

CO₂ Gas Turbine Cycle Mockup Test

Verification of

- Compression work reduction around critical point
- PCHE T&H performance
- Operability of bypass flow configuration

Recuperator-1 (19 kW)

Flow Diagram of Mockup Test Facility

LPC= Low Pressure Compressor, HPC= High Pressure Compressor

Material Corrosion Test

- Corrosion rate & mechanism (break away corrosion?)
- Material selection & corrosion control

Flow Diagram of Material Corrosion Test Facility

Pipe Rupture Propagation Test using SWAT for MONJU

Mile stone for Super Critical CO₂ FBR Construction

Phase	First Step (MEXT Program)	Second Step	Third Step
	(2003-2006)	(2007-2010)	(2011-2015)
Thuse	Verification of Fundamental Performance,	Turbomachinery &	Engineering
	System Design & Evaluation	IHX Mockup Tests	Mockup Tests
R&D	 1. Cycle Mockup Test Compressor work reduction around critical point PCHE T&H performance Operability 2. Material Corrosion Test Corrosion Mechanism Corrosion control 3. Na-CO₂ Reaction Test Reaction mechanism Rupture propagation 	 1. Turbomachinery Test Turbine Compressor 2. Na-CO₂ IHX Test T&H performance CO₂ leak protection 	 Engineering Test Core Components Materials Safety et al Safety et al 2. Prototype Plant Construction
	Information Exchange as I-NERI *	International Collaboration	International Project

* Japan , US , France , England , Korea

Super Critical CO₂ Gas Turbine Cycle FBRs

- 1. Carbon dioxide gas turbine cycles are achievable 4 to 11% higher cycle efficiency than He cycles due to compressor work reduction around the critical points.
- 2. Cycle efficiency of the CO₂ cycles are about 41% at 527 °C and 12.5MPa,which is comparable with those of LMFRs at the same core outlet temperature.
- **3.** The CO₂ cycles might exclude the problems related to safety, cost and maintenance.
- 4. Fast reactors with the CO₂ cycles are expected to be a potential alternative option to LMFRs.