NUCLEAR WASTE BURNER FOR MINOR ACTINIDES ELIMINATION

<u>Andrey Gulevich</u>, Anatoly Zrodnikov, Vadim Chekounov, Alexander Dedoul, Natalya Novikova, Yury Orlov, Alexander Roussanov, Vladimir Troyanov

SSC of the RF Institute for Physics & Power Engineering, 1, Bondarenko Sq., Obninsk 249032, Russia Fax: +7 (095) 8833112, Phone: +7 (08439) 98685, E-mail: gulevich@ippe.rssi.ru

> Tokyo, Japan, November 4, 2004 COE-INES International Symposium, INES-1

NUCLEAR WASTE BURNER (NWB) – AN ADS INDUSTRIAL PROTOTYPE FOR MINOR ACTINIDES ELIMINATION

> Carlo Rubbia, UP and ENEA, Italy

Noulis Pavlopoulos PULdV, La Defense, France Anatoly Zrodnikov

IPPE, Russia

n_TOF Winter School on Astrophysics, ADS, and First Results Les Houches, France, February 24 -28, 2003

2003

ACTINIDES AND FISSION PRODUCTS

- Over 300 thousand tons of spent nuclear fuel (SNF) will be accumulated in technological lines of nuclear industry by 2010.
- The most hazardous isotopes in spent fuel will be:
 - Minor actinides:

3000 t Pu; 140 t Np-237; 120 t Am-241, etc.

High-level fission products:

250 t Tc-99; 90 t Cs-135; 60 t I-129, etc.

 Hundreds tons of high-level radioactive products are accumulated in the process of nuclear weapons development

◆ Total long-lived (>10⁵ years) radioactivity exceeds 5.10⁸ Ci

The main challenge for safe development of nuclear power is management of extreme quantities of radioactive materials

WAYS OF MANAGEMENT

Conservative - use of underground repository in deep geologic formations for the period over 100 000 years

Dynamic - reprocessing of spent nuclear fuel, incineration of long-lived minor actinides and some fission fragments to decrease total long-lived radioactivity to the level, that allows a subsequent final disposal

FAST REACTORS AND ADS – SYSTEMS

Technologies brought to wide use Minimum auxiliary power production needed Excluding the reactivity accidents Superfast neutrons More flexibility with fuel and MA loading

OBJECTIVE OF THE NWB - PROJECT

Creation of the world's first industrial accelerator driven system and demonstration of semi-industrial technology for safe transmutation of minor actinides and other high level wastes of nuclear power

THE MAIN TASKS OF THE NWB - PROJECT

- Comprehensive demonstration the accelerator-driven system technology

- Gain the operational and technological experience for the later use in other projects

- Demonstration the technology of safe transmutation of minor actinides and other radioactive waste of the nuclear fuel cycle.

KEY COMPONENTS OF TECHNOLOGY FOR ACCELERATOR-DRIVEN TRANSMUTATION

TECHNOLOGY PREPAREDNESS

TECHNOLOGY	CURRENT STATUS
Fast neutron reactors	Have been used in industry of Russia, France, Japan and US
Heavy metal-cooled reactors and targets	Experience of Russia – 80 reactor years of nuclear power systems for submarines; R&D results for nuclear power designs in Russia, Europe, Japan and US
Technologies for pyrochemical reprocessing of SNF and remotely- controlled fabrication of fuel elements	Semi-industrial vibropack MOX fuel production for fast reactors in Russia
Technology of high-current proton accelerators	Operating accelerators in Europe, US, Japan and Russia

INSTITUTIONS READY TO WORK FOR NWB PROJECT WITHIN AN INTERNATIONAL COOPERATION

Russian Institutions	European Institutions
RRC Kurchatov Institute (Moscow) IPPE (Obninsk)	
EDB «Gidropress» (Podolsk) RIAR (Dimitrovgrad)	ENEA (Italy)
NIKIET (Moscow)	
INR RAS (Troitsk)	

PREPAREDNESS OF RUSSIA FOR THE PROJECT REALIZATION

Scientific and technological background of work

- more than 50-years experience with heavy metal coolant technology
- experience gained with development, construction, operation, and decommissioning of reactors for nuclear-powered submarines with leadbismuth coolant and fast sodium reactors;
- designing and experience with development and construction of various types of power, research and experimental reactors;
- experience with design development of reactor systems with Pb-Bi coolant: SVBR-75/100; BRUS-150; BRUS-300, etc.
- experience gained with development, construction, and pre-operational adjustment/testing of target complex MC-1 for LANL (USA);
- databases (nuclear and reactor constants, material science, thermal physics, etc.)

50 YEARS HEAVY METAL COOLANT TECHNOLOGY IN INTENSIVE USE

1951

Lead-bismuth facilities at IPPE

NUCLEAR-POWERED SUBMARINE (LEAD-BISMUTH COOLED REACTOR)

DEVELOPMENT OF CIVIL NUCLEAR POWER SYSTEMS WITH LEAD-BISMUTH COOLANT (DESIGNS)

Reactor System	Thermal/Electric Power, MW	Years
TES-M	6/1	1987-1993
«Angstrem» (transportable NPP)	30/6	1985-1990
Cruise-50 (naval NPP)	200/50	1985-1990
SVBR-75	265/75	1995-2000
SVBR-75/100	260/100	2000-2003
TZMR-10	60/10	2002-2003
BRUS-150	550/150	1990-1995
BRUS-300	1100/300	1990-1995
SVBR-600	1875/600	1990-1995

SVBR-75/100 REACTOR

Parameter	Value
Thermal power (rated), MW	280
Temperature, °C	
at the core outlet	482
at the core inlet	320
Number of fuel rods, items	12114
Average volume power deposition density of the core, kW/dm ³	140
Average linear loading per fuel rod, kW/m	~24,3
Fuel type	UO ₂
Loading of U-235, kg	1470
Average enrichment of fuel, at.%	16,1
Volume of coolant in primary circuit, m ³	18
Dimensions of reactor module: diameter by height, m	4,53×7,55

WORLD'S FIRST LEAD-BISMUTH TARGET COMPLEX OF 1 MW POWER FOR LANSCE PROTON ACCELERATOR

Designed jointly by IPPE and EDB "Gidropress"

Target complex at the final stage of assembling

- Energy of protons Current Power of proton beam Maximum density of current Yield of generation neutrons Target inlet temperature Target outlet temperature Coolant Flow rate
- 800 MeV 1.25 MA 1 MW 77 mkA/cm2 1.5·10¹⁷ N/s 230 ⁰C 330 ⁰C 14.2 m³/h

NWB PROJECT EXPERIMENTAL BASE IN RUSSIA

- Reactor test complex involving: the high-flux research reactor SM-3; fast neutron reactor BOR-60 with sodium coolant, etc.;
- Reactor research complex involving: super-power pulsed reactor BARS-6 and zero power reactors;
- Technological research complex involving: experimental rigs for bringing to wide use the large-scale equipment for lead-bismuth coolant systems;
- Radiochemical laboratory complex for complete analysis of irradiated materials and irradiated fuel of nuclear reactors;
- Research material irradiation complex for a full post-reactor studies irradiated fuel elements, SA, and reactor materials;
- Experimental semi-industrial complex for production and reprocessing of fuel compositions (including compositions with minor actinides).

Institute for Physics and Power Engineering (IPPE, Obninsk)

BFS Zero power facility Pulsed reactor BARS-6 Radiochemical complex Lead-bismuth technological test facilities Accelerator EGP-15

Research Institute of Atomic Reactors (RIAR, Dimitrovgrad)

BOR-60 reactor

Chemical/Technology facilities BN-600 fuel assembly fabrication line Hot cells

Moscow Mezon Plant (INR RAS, Troitsk)

High-current proton accelerator Experimental hall with beam splitting Neutron sources and targets of proton accelerators

PREPAREDNESS OF EUROPEAN LABS

- ENEA/ANSALDO led design of 1-3 MW power proton cyclotron
- On-going projects
 - EAP-80, XADS; MYRRHA; MEGAPIE; TRADE etc.

- R&D in the frame of "European RoadMap for Accelerator Driven Systems (ADS) for Nuclear Waste Incineration"
- Large-scale experimental facilities on coolant technology
 - KALLA lab in Karlsruhe, Germany
 - CIRCE in Brasimone, Italy

LAYOUT OF NWB INDUSTRIAL PROTOTYPE

LOCATION OF ADS-IP FACILITIES AT THE SITE OF THE INSTITUTE FOR PHYSICS AND POWER ENGINEERING AB

MRB

SITE 1

EKYaB

4

10

A 600 MeV cyclotron: PSI as a model?

Maximum beam power ~ 1 MW

Мишенно – бланкетный модуль

1— Корпус моноблока 2— Активная зона 3— Теплообменник 4— Перегрузочное устройство 5— Протоновод 6— Циркуляционный насос 7— Внешняя защита 8— Внутрикорпусная защита

Варианты ввода пучка протонов

SHEME OF THE SUBCRITICAL REACTOR AND TARGET

Maximum use of the experience of the facilities with lead-bismuth coolant, including the SVBR 75/100 reactor

• Mono-block construction of NWB comprising the whole primary circuit with its heat-exchange equipment, invessel radiation shielding, subcritical reactor and the target modules

• The reloading device is mounted on the cover of the module for loading/unloading of the subassemblies

 Temporary storage of subassemblies with SNF

NUCLEAR WASTE BURNER PARAMETERS

Thermal power of target	3 MW
Thermal power of reactor	100 MW
Dimensions of reactor module: diameter x height, mm	985x900
Coolant	Pb-Bi
Temperature	
core inlet	270°C
core outlet	435°C
Average velocity of coolant	2 m/s
Fuel -	UO ₂ / UN / U-Zr
Loading of U (h.a.)	3000 kg

NWB NEUTRONICS

#1 version MA Dioxide + ZrO₂ #2 version AmO₂+NpO₂+Zr

NWB NEUTRONICS (cont.)

Parameter, units	Variant 1		Variant 2		
Fuel with MA (400 kg)	MA Dioxi (108 ass	de + ZrO ₂ emblies)	AmO ₂ +NpO ₂ +Zr (42 assemblies)		
Loading of U (h.a.), kg	23	375	2924		
Enrichment of ²³⁵ U, %	22, 25	5.5, 38	18.5, 21, 25.5		
Beginning/end of service time between loadings (year)	T = 0 T = 1		T = 0	T = 1	
Multiplication factor M	29,643 24,552		29,39	30,143	
K _s	0,967 0,961		0,967	0,968	
Burning of MA, kg/year	15,1			15,5	
Specific burning of MA, g/MW-day	~ 0,41		~ 0,43		
Buildup of ²³⁸ Pu kg/year	10),1	9,9		

NWB FUEL CYCLE

THE MAIN PROBLEMS AND KEY SOLUTIONS

Key engineering, technical and technological solutions	Solution versions				
Coolant type in the reactor and target cooling circuit		Pb-Bi			
	Integr	al	Loop	type	
Primary circuit configuration	In the case whe equipment mai cover require " reasonable to c	shielding and rget circuit it is guration			
Target design	"Windo	ow"	"Windo	owless"	
Target cooling circuit	Independent Combined with the cooling circ			th the reactor circuit	
Number of heat – exchanging circuits	2 3			3	
Primary pump type	Rotary (d	centrifugal)	pump with elect	ric drive	
	Vibro - MOX	U-Zr	UN	UO ₂	
Fuel type	The main part of the reactor is loaded with a "manoeuvrable" fuel (UN, U-Zr or UO ₂ , vibro - packed). As the operational and engineering problems are being solved a partial loading of assemblies with MA may take place. Isotopic composition of SA with MA has to be determined based on the reprocessing technology			a o - packed). ns are being MA may take has to be hnology	
Core design and its refueling	Assembly – by assembly refue	– eling	Full core loading by – assembly u	, assembly – nloading	

THE MAIN PROBLEMS AND KEY SOLUTIONS (cont.)

	Fuel pin spacing – rib - to - rib		
ruei assembly design			
Fuel pin design	Cladding consists in a gas – bonded or sodiu	four – rib tube, um – bonded	
	present	absent	
Safety rods and shim rods	The solution about the design with or w depends significantly on the accuracy o reactor subcriticality level	ithout safety and shim rods of calculation justification of	
In – vessel shielding	B₄C bricks cooled wit	h the blanket	
Equipment shielding in the area of neutron guide tube	The necessity to have additional shield coolant activation and to provide the ac environment on the cover of the reactor have the access to the equipment requir different from the ones accepted in the	ng against the secondary ceptable radiation - target module in order to res certain lay-out solutions reactor building industry	
Increased gas – system activity in the target circuit	The increased gas system activity requi methods to control leak – tightness of for spectrometric radiometer of high accura	res the development of new uel pin cladding, e.g. acy	
Proton beam interruption problem	A relatively high frequency of proton be special measures to decrease thermal – circlet equipment. The use of fuel with h considered of a high priority	am interruption requires cycling loads on the primary high heat conductivity is	
Coolant technology and materials	The effect of spallation products on the the effect on coolant quality control, inc techniques for cleaning the circuit, cool impurities require additional study	material corrosion resistance, cluding the devices and ant and gas system from	

FUEL AND CLADDING MATERIALS

- corrosion resistance of cladding at operation temperatures
- radiation stability and strength at neutron high doses
- multiple and thorough thermal power change caused by beam trips
- high radiation stability of fuel

Cladding	Four-ribs tube of EP-823
Fuel	Vibro-packed MOX or Cermet
Gap	Na for Cermet

PRIMARY CIRCUIT STRUCTURE MATERIALS

Component	Material	Design basis limits		
		Corrosion resistance validated on the basis of		
		5 000 hours at 650 ºC;		
Cladding	EP-823	20 000 hours at 560-600 ºC		
		Data base on steel properties at the affecting doses up to 100 dpa at the temperature of 300-600° C		
In-vessel structures	EP-302 (new developments on 9% Cr steels)	Corrosion resistance validated on the basis of		
Steam-generator tubes	bimetal EP-302/CHS-33 (new developments on 9% Cr steels)	100 000 – 120 000 hours at the temperatures of 450-500 ⁰C		
Primary vessel	X18H10T Stainless steel	Durable corrosion resistance validated up to the temperatures of 400-420 °C The legitimate fluence of fast neutrons of up to ~5·10 ²³ n/(cm ² s) was validated by the experience of BR-10 reactor operation at IPPE		

POWER RELEASE IN MA DIOXIDES OF DIFFERENT CONTENT

(theoretical density $\gamma_{th} = 11,46 \text{ g/cm}^3$)

	MA =	= Am	MA = '	VVER SNF	MA = "Spiro"mixture	
NUCLIDE	weight %	q, W/cm³	weight %	q, W/cm³	weight %	q, W/cm³
²³⁷ Np	-	-	43.42	8.975E-05	12.5	2.58E-05
²⁴¹ Am	87	1.021	48.1	0.565	50	0.587
^{242m} Am	0.1	-	0.044	2.077E-05	-	-
²⁴³ Am	12.9	0.0085	7.14	0.0047	25	0.0165
²⁴² Cm	-	-	0.0001	1.375E-03	-	-
²⁴³ Cm	-	-	0.0205	3.889E-03	-	-
²⁴⁴ Cm	-	-	1.21	0.354	12.5	3.657
²⁴⁵ Cm	-	-	0.08	4.734E-05	-	-
Total power release at γ _{th} , W/cm³		1.03		0.93		4.26

ISOTOPIC CONTENT OF FUEL in SA

FUEL ⇒ ↓	SA with N	IA, variant 1	SA with MA, variant 2		SA with MA, variant 3		SA with UO ₂ , variant 1	
NUCLIDE (kg)	loading	unloading	loading	unloading	loading	unloading	loading	unloading
²³⁴ U	-	0.019	-	0.22	-	0.042	-	-
²³⁵ U	-	-	-		-	-	4.96	3.19
²³⁶ U	-	-	-		-	-	-	0.32
²³⁸ U	-	-	-		-	-	9.34	8.75
²³⁸ Pu	-	0.71	-	0.80	-	1.47	-	0.0008
²³⁹ Pu	-	0.038	-		-	0.061	-	0.37
²⁴⁰ Pu	-	0.016	-		-	0.008	-	0.014
²⁴¹ Pu	-	0.001	-		-	1.9E-04	-	3.6E-04
²⁴² Pu	-	-	-		-	3.5E-06	-	6.4E-06
²³⁷ Np	1.59	1.14	1.59	0.977	6.15	4.433	-	0.0108
²⁴¹ Am	1.79	1.21	1.79	0.987	2.93	1.983	-	2.9E-05
²⁴³ Am	0.27	0.21	0.27	0.19	0.44	0.355	-	1.7E-07
²⁴² Cm	4.1E-06	0.041	4.1E-06	0.048	-	0.056	-	4.2E-07
²⁴³ Cm	0.001	0.004	0.001	0.005	-	0.003	-	7.8E-08
²⁴⁴ Cm	0.046	0.071	0.046	0.072	-	0.045	-	1.0E-07
²⁴⁵ Cm	0.003	0.006	0.003	0.007	-	0.002	-	8.9E-08
Fractions	-	0.23	-	~ 0.3	-	1.055	-	1.66
Total number of MA	3.70	2.68	3.70	2.3	9.52	6.88	-	0.0108
MA burning, kg/SA(%)	-	1.02 (27.6)	-	1.4 (37.8)	-	2.64 (27.2)	-	-
Uranium	-	0.019	-	0.022	-	0.034	14.3	12.25
Plutonium	-	0.765	-	~ 0.85	-	1.25	-	0.38

CURRENT RUSSIAN TECHNOLOGIES: MA SEPARATION AND FUEL FABRICATION

In Russia only ²³⁷Np (in the form of NpO₂) and, periodically, americium-241 minor actinides are separated when fuel is regenerated.

Variants of composition of the fuel with MA:
Fuel with the artificially made mixture of Np and Am.
Fuel with neptunium only.
Fuel with americium only.
Fuel with a mixture of MA from SNF.

In all cases, MA will most likely be in mixture with matrix material in the form of oxides, nitrides or metals. Initial content of MA in the fuel should be determined with the account of the limit on the specific heat generation in it of ~0.2 W/cm³.

CURRENT RUSSIAN TECHNOLOGIES: FABRICATION OF FUEL SUBASSEMBLIES WITH MA

At this time, the amount of separated actinides is not large (tens of kg) and there is no actual fabrication of fuel elements and subassemblies with MA.

MA burnup process in an ADS system should have several steps:
loading of one or several experimental assemblies into the core;
increase of the number of assemblies with the considerable increase of MA amounts in the core.

Individual assemblies can be fabricated at RIAR and partially at IPPE using vibropack technology.

CURRENT RUSSIAN TECHNOLOGIES: REPROCESSING IRRADIATED ASSEMBLIES

On an industrial scale, this procedure should be carried out at the specialized enterprises of Russia. However, there is no industrial technology for reprocessing of irradiated assemblies so far.

Individual fuel elements and SA may be reprocessed at RIAR and IPPE. This activity will provide experimental assessment of calculated data on transmutation and allow to make recommendations for industrial enterprises.

Inlet and outlet temperatures of the target (interruption - 5 s)

PROTON BEAM INTERRUPTIONS

Power of the reactor

Average fuel temperature

THERMAL MECHANICS, STRENGTH AND RELIABILITY OF THE TARGET AND PRIMARY CIRCUIT EQUIPMENT

Acting factors

- radiation damage of materials,
- corrosion damage in Pb-Bi,
- high energy release in the window and coolant
- coolant pressure
- pulse nature of proton beam and related stress and temperature loads

Parameters of target window

Energy release, kW	25
Material	EP-823
Radiation dose, dpa/year	70
Build-up, appm	
Не	2000
H ₂	20000
Coolant velocity, m/s	2
Window temperature, ^o C	400-500
Life time, years	1

Pb-Bi COOLANT AND STRUCTURAL MATERIALS: CORROSION AND MASS TRANSFER

Pecu	iarities	of Pb-Bi

A lot of chemical elements and compounds are well soluble in Pb-Bi

Liquid Pb-Bi evidently interacts with oxygen and its concentration in coolant is the most important factor!

Consequences

Destruction of materials and tightness failure

Excess of oxygen results in slagging and the coolant thermal hydraulics degradation. Lack of oxygen led to dissociation of oxide films and progress of corrosion processes

RADIATION SAFETY

Gamma-radiation dose rate on the cover of the core with the vertical insertion of a beam after 3-year operation and 30-day holding is ~1R/hour	The other ways should also be o	of beam insertion considered
External radiation protection of the target vessel:Water tank~1000 mmPb layer~200 mmHeavy concrete~1500 mm	It will be possib dose rate to 0.3	le to reduce radiation μR/s
	Element	Release into gas system
Accumulation and release of Polonium		5 [.] 10 ⁻⁹ %
spallation products into the gas	Mercury	0.1 %
system	Boron and iodine	6·10 ^{-3 %}
	Rubidium and cesium	10 ⁻³ %

SUPPORTING EXPERIMENTS AT THE ACCELERATOR OF MOSCOW MESON PLANT

View of neutron source complex

•Neutronic studies using an enhanced spectrometer.

Designing an experimental target with Pb-Bi coolant with the power of ~30KW.
Studies of damages of "window" structural materials in a proton beam.

•Studies of radiation safety.

NWB PROJECT: PRELIMINARY SCHEDULE

Description	Year	1	1 2					2			3				4				5			6			7		
																					T						
KEY R&D, SUPPORTING ACTIVITIES																						Π					
Fuel development irradiation&testing																											
Development and production of the core mock-up elements																											
Tests of the core elements in BOR-60											_	_	_	_	_							$ \longrightarrow $		4			
«Usual» tuel					_												_	_			+	\mapsto	\rightarrow	4			
Post-radiation tests					_	_	_														+	+		+			
																								-			
Core& l'arget Physics, Nuclear data																											
Tests to substantiate nuclear data support																											
Integral experiments on critical assemblies (BFS, etc.)																											
Materials irradiation in the mixed n-p fields																											
																	_					$ \rightarrow $		4			
Target thermohydraulics																											
Coolant technology																	-			+		\vdash		+			
																					_	\square		4			
																		_		_	—	+	_	4			
Design limits justification																								4			
																						\vdash	+	+			
Fuel cycle																											
Determination of the fuel equilibrium and transient composition													+											-			
Substantiation of the fuel processing technologies																											
Development of implementation scenarios																											
Full scale ADS - Burner Conceptual design																											
																					-			-			
Licensing																											
Adjustment of protocol of intentions																											
Development, modifications and approval of regulatory documentation																											
Agreement on safety requirements																			\square			\square		4			
Approval of a Preliminary Safety Report (PSAR)																			\square			$ \rightarrow $		_			
Getting the permission for construction work Development and ensating is Seferic venerat (SAD)							_											_			\rightarrow	+	\rightarrow	-			
Development and approval of Safety report (SAK)					_	_	_											_	\vdash		_	+	_	+			
Getting the permission for other badang					-							-	+	+	-					-	—	+		+			
					_	_	_				_	-		_	-					_				_			

NWB PROJECT: PRELIMINARY SCHEDULE (cont.)

Description	Year	1		1						2			3			4			5			6			7		
Target-reactor system development																											
Statement of work draft and initial data for the development Technical solution (pre-concentual design)				_	_	_	_		_	_				_	_	_		_	_		+	+					
Development and acceptance of a Statement of Work																											
Conceptual design														_	_			_	-	$ \vdash $		+					
Basic design Detailed engineering design and operation documentation						_								-	-				-		+	+					
Production																											
Installation and start-up work				_		_			_	_								_	_			+					
Accelerator																											
Reconciliation of accelerator parameters and characteristics																											
Design modifications including control system Production									_	-				_	_			+-	-	$\left \right $		+	_				
Installation and start-up work															+												
Auxiliary systems																											
Conceptual design																											
Basic design																											
Detailed engineering design, service and operational documentation				-	_	_												+	-		\vdash						
Installation and start-up work																											
Automated Control System development																											
Conceptual design																											
Detailed basic design						_													_		_	+					
Equipment production				-	-	_	-	-										+	-		\vdash	+ +					
a) Accelerator complex																											
c) Target-blanket system																											
d)System as a whole										-				_							_						
Buildings, constructions																											
Feesibility study														_													
Buildings erection and reconstruction									-												+	+					
a) Accelerator complex																											
b) Target-blanket system																											
c) Fuel handling				_																		+	_				
																							_				

CONCLUSIONS

- Proposal for launching an international project for the creation in Russia of the world's first Accelerator - Driven System and semiindustrial demonstration of the technology for safe transmutation of MA and other high-level radwastes have been formulated.
- The key engineering, technical, and technological challenges to be solved, preliminary parameters of the industrial prototype, scope of R&D works, as well as the capacity of the Russian labs having longterm experience in designing, manufacturing, and operating the facilities has been outlined.
- It has been shown that 100 MW Nuclear Waste Burner can be created within 7-8 years; with the loading of 200 - 400 kg of MA it could provide the burning level of ~ 10 - 20 kg/year.

The authors acknowledge the valuable and active participation of organizations and experts in the proposal preparation:

SSC RF-IPPE – E.A.Zemskov, O.G.Komlev, V.I.Levanov, M.P.Leonchuk, A.V.Lamkov, E.Kh.Pylchenkov, E.Ya.Smetanin, G.I.Toshinsky

RSC "Kurchatov Institute" – E.P.Velikhov, L.I.Ponomarev

SSC RF-NIIAR – A.F.Grachev, A.V.Bychkov, Yu.G.Toporov

OKB "Gidropress" – Yu.G.Dragunov, V.S.Stepanov, N.N.Klimov, M.L.Kulikov

NIKIET - E.O.Adamov, Yu.A.Cherepnin, B.A.Gabaraev, V.V.Orlov,

JINR of Russian Academy of Sciences – V.A.Matveev, S.F.Sidorkin, M.I.Grachev, A.V.Feshchenko, E.A.Koptelov, A.D.Perekrestenko