Idaho National Engineering and Environmental Laboratory

Investigation of Polonium Removal Systems for LBE-Cooled Fast Reactors

1st COE-INES International Symposium

Eric Loewen, Ph.D

Tokyo, Japan November 2004 Research supported by JNC

Presentation Outline

- The INEEL
- The polonium issue in lead-bismuth reactors
- Experiments at the INEEL
- Initial modeling effort
- Summary

The Polonium Issue in LBE-Cooled Reactors

3

4

Why Polonium Removal

Processing as low as 0.01% of the coolant mass flow rate can reduce the Po source during accidents by two orders of magnitude.

Radiological Risk of Po-210

- U.S. Nuclear Regulatory Commission
- Specific activities

¹³⁷ Cs -	87 Ci/gram
⁶⁰ Co -	1,130 Ci/gram
²¹⁰ Po -	4,500 Ci gram

Derived Air Concentrations (DAC's)

⁶⁰ Co -	500 Bq/m ³
¹³⁷ Cs -	200 Bq/m ³
²¹⁰ Po -	10 Bq/m ³
²³⁹ Pu -	0.2 Bq/m ³

Tellurium as a Surrogate of Polonium

- Po has no stable isotopes
- Tellurium and polonium are both Group VI elements.
- They are both solid and metallic at room temperature and pressure.
- Their most stable oxidation state is +4.
- Their atomic radii are comparable.
- There are similarities in their electrochemical behavior as indicated by their pH-potential diagrams.
- The Russians used Te as a Po surrogate for their alkaline extraction experiments.

Experimental Use of Tellurium

Like Po, Te forms a stable intermetallic compound with Pb in lead-bismuth.

	PGT Bulk sample analysis Wed Apr 3 12:14:52 2002
PbTe grains	ZAF Method, variable-width filter
	Sample /xd1/window1/#1,18C1-03.spt Accelerating Voltage: 19.75 keV Takeoff Angle: 32.00 degrees Library for system standards: /imix/spectra/system_standards.dir
	Elm Rel.K Z A F Norm wt% Atomic % Method used Line
	Pb 0.5800 1.042 1.002 1.000 60.56 48.74 From spectrum L line Cd 0.0004 0.931 1.450 0.987 0.05 0.08 From spectrum L line Te 0.2998 0.982 1.315 1.000 38.69 50.56 From spectrum L line W 0.0069 1.005 1.030 0.974 0.70 0.63 From spectrum L line Bi 0.0000 1.041 1.000 0.00 From spectrum L line
	Total 100.00 100.01
LBE matrix	Goodness of fit 0.42
	Sample /xd1/window1/#2,18C1-04.spt Accelerating Voltage: 19.75 keV Takeoff Angle: 32.00 degrees Library for system standards: /imix/spectra/system_standards.dir
	Elm Rel.K Z A F Norm wt% Atomic % Method used Line
	Pb 0.5738 1.041 1.002 1.000 59.89 48.29 From spectrum L line Cd 0.0056 0.931 1.450 0.988 0.75 1.11 From spectrum L line Te 0.2891 0.982 1.322 1.000 37.53 49.14 From spectrum L line W 0.0000 1.005 1.030 0.973 0.00 0.00 From spectrum L line Bi 0.0176 1.041 1.001 1.000 1.83 1.46 From spectrum L line
Acc.V Spot Magn Det WD	Total 100.00 100.00
15.0 KV 4.3 265X SE 9.6 16C1	Goodness of fit 0.32

Alkaline Extraction

This technique was first proposed by IPPE, Russia.

- The reaction is:

 $PbPo+4NaOH \leftrightarrow Na_2Po+Na_2PbO_2+2H_2O$

- LBE does not participate in the reaction.
- The reaction was found to be impaired by the presence of oxides in the melt. So our experiments will be carried out in a reducing environment.

The INEEL Apparatus for Investigation of the Alkaline Extraction Mechanism

Experimental Run Main Steps

- Load the LBE and tellurium into the crucible.
- Energize the heaters to melt the metals and reach the desired temperature.
- Add the NaOH.
- Hold conditions for a selected time.
- Turn off gas injection to allow for gravity separation of the NaOH from the metals.
- Extract samples from the NaOH and metal regions.
- Cooldown the apparatus.
- Analyze the samples with the ICP and SEM, as needed.

Two different NaOH sampling methods

A crucible removed from the reaction cell after cooldown

Post Experiment LBE and NaOH residual removed from crucible

Idaho National Engineering and Environmental Laboratory

Alkaline Extraction Experimental Results

Mass Spec data Exp. 25A

Measured Te concentration in Experiments

The solubility of Te in NaOH

Experiment 24 Te concentration plotted as a function of time

First Order Modeling

Second Order Modeling

 $\frac{-d[Te]}{dt} = k_2[Te]^2$

1 $=k_2t$ $\left(\frac{[Te]_{t}}{[Te]_{t}} - \frac{[Te]_{o}}{[Te]_{o}} \right)$

A linear plot for a first and second –order fit of Te extraction data All time step data from Experiment 24 was used in the fit.

A linear plot for a first- and second-order fit of Te extraction data

Second order rate constants compared to loaded Te concentration

Second order rate constants compared to LBE oxygen potential

Arrhenius rate law

Log k versus 1/T to determine E_a

Back Reaction

 $PbTe + 4NaOH \xrightarrow{k_c} Na_2Te + Na_2PbO + H_2O$

 $\frac{d(c_{PbTe})}{dt} = -k_f(c_{PbTe}) + k_r(Na_2Te)$

 $\frac{(Na_{2}Te)_{eq}}{(PbTe)_{eq}} = \frac{(c_{PbTe})_{0} - (c_{PbTe})_{eq}}{(c_{PbTe})_{eq}} = \frac{k_{f}}{k_{r}} = K$

Gibbs-Helmholtz equation

29

$$\frac{\delta(\Delta G^{\circ}/T)}{\delta T} = -\frac{\Delta H^{\circ}}{T^{2}}$$
$$\frac{\delta(\Delta G^{\circ}/T)}{\delta(1/T)} = \Delta H^{\circ}$$
$$\frac{\delta(\ln K_{p})}{\delta T} = \frac{\Delta H^{\circ}}{RT^{2}}$$

$$\ln K_p = 2.303 \log K_p = \frac{-\Delta H^{\circ}}{RT} + C$$
-55 kJ/mole

Log K versus 1/T to determine heat of reaction

Research products

- Fruitful collaboration between JNC and INEEL.
- Validation of the alkaline extraction process;
- NaOH delivery and sampling techniques for future experiments with Po;
- Rate constants for extraction of Te from LBE as for temperature, Te concentration, and oxygen potential;
- Validation of the Arrhenius empirical equation for Na₂Te;
- Activation energy for the formation determined;
- Electro-deposition appears that Te will migrate.
- Three ICONE, one Nuclear Technology and one future (submittal planned in two months) publications

Thank You.

We sincerely wish to acknowledge JNC for providing the funding to perform this fruitful research.

Idaho National Engineering and Environmental Laboratory

Electro-Deposition Experiments

Idaho National Engineering and Environmental Laboratory

Electrodes and thermocouple after cooldown

Electrodes used in the electrodeposition experiments

SEM Analysis of Mo Screen

38

SEM Analysis of LBE Experiment 34

SEM Analysis of Cathode, No LBE Deposition

20

SEM Analysis of Anode Showing LBE Deposition

