R&D On Nuclear Hydrogen Production using HTGR at JAERI

K. Onuki, Y. Inagaki, R. Hino, and Y. Tachibana Japan Atomic Energy Research Institute

> COE-INES International Symposium Tokyo, November 1, 2004

Toward the Hydrogen Energy Society

Current Society depends on fossil energy

Exhaustion of fossil energy

Effects on global environment; acid rain, global warming, etc.

Activities on Hydrogen in Japan

"Basic Plan for Energy Supply and Demand" based on "Basic Law on Energy Policy Making" (Decided upon by the Cabinet on 6 October, 2003)

Effort for Hydrogen Energy Utilization (Chapter 2, section 6.3)

- Hydrogen is a clean energy carrier without CO₂ emission.
- Commercialization of hydrogen production system using nuclear, solar and biomass, not fossil fuels, is desired.

Overview of R&D at JAERI

Objective: Establishment of HTGR technology Establishment of heat utilization technology

System Integration Reactor Technology Technology **Hydrogen Production Process** HTTR **Containment** vessel Hot gas duct Control center Reactor IHX vessel

Hydrogen Production Technology

Bench-scale apparatus of IS Process

System Integration Technology

Objective

Development of technology for safe and economical connection between reactor and hydrogen production facility

R&D Items

- Safety technology against explosion
 - Design for protection and mitigation against combustible gas release: underway
 - Estimation of damage on nuclear plant by blast waves from explosion: underway
- Safety technology against radioactive materials release
 - Development of high temp. isolation valve: underway
 - Estimation of tritium permeation passing through IHX: finished

Control technology

 Prevention of thermal disturbance from hydrogen production facility to reactor by steam generator : finished

Plant simulation code

- Verification by simulation test: underway

Hydrogen Production Technology

IS Process

- Hydrogen from water and nuclear heat (CO₂ free)
- Thermochemical cycle
- Iodine- and Sulfurcompounds are used as recycling materials

R&D on IS Process

For efficient H₂ production,

<Problems>

of HI (ca. 20%)

<Approach>

(1) Extractive distillation (GA)
Destroy the azeotrope with H₃PO₄

 (2) Reactive distillation (RWTH Aachen)
Shift the azeotropic composition at elevated pressure (e.g. 20bar).
Carry out the decomposition in the distillation column.

 (3) Membrane separation (JAERI)
Pre-concentrate the HIx soln. by electrodialysis.
Enhance the one-pass conversion by membrane reactor.

JAERI's approach for efficient H₂ production

<Problems>

/ large thermal burden for the distillation of azeotropic hydriodic acid (HI/H₂O: 1/5)
/ excess HI circulation due to low equilibrium conversion of HI (ca. 20%)

<Measures>

(1) preconcentration to overazeotropic composition

Present study focuses on (1) Electro-electrodialysis

Corrosion Environments in IS Process

Previous Corrosion Study in Sulfuric Acid at JAERI

Candidate materials for sulfuric acid service in IS process screened by the corrosion study carried out under atomospheric pressure condition

For Bunsen reaction section
Ta, Zr, SiC, Si₃N₄, SiO₂, PFA

For sulfuric acid concentration
Ta, Zr, Fe-Si, SiSiC, SiC, Si₃N₄

 For sulfuric acid vaporization Fe-Si, SiSiC, SiC, Si₃N₄

Corrosion Test under Pressurized Condition

Quartz ampoule with test piece and sulfuric acid

Autoclave

Test Results in Sulfuric Acid

Corrosion rates in 95wt% sulfuric acid*1

Material —	Corrosion rate [g/m ² h]	
	100hr test	1000hr test
SiC	- 0.10	- 0.002
Si-SiC	0.0	- 0.006
Si ₃ N ₄	0.0	- 0.007
Fe-Si (as-prepared)	1.1	0.13
Fe-Si (annealed)* ²⁾	- 0.12	0.065
SX (pre-oxidized) * ³⁾	- 0.28	0.96 * ⁴⁾

*1) test conditions: 733K(460°C), 2MPa.

*2) annealed at 1373K(1100°C) under vacuum for 100hr.

*3) oxidized in air at 1073K(800°C) for 90hr.

*4) test piece size: 4x4x20mm. ampoule broken after 800hr.

Screening Results of Candidate Materials

Candidate materials has been screened by corrosion tests in the process condition.

R&D is required for the components used in the boiling sulfuric acid environments.

ex) hybridization of corrosion resistant material and pressure resistant material

R&D Plan of IS Process in JAERI

