Seminar: Activities for Lead-cooled Fast Reactors (LFR) in Generation IV International Forum (GIF) *Tamachi Campus, Tokyo Institute of Technology, Tokyo. November 9, 2012*

National Status on LFR Development : Japan

Minoru Takahashi

Center for Research into Innovative Nuclear Energy Systems (CRINES) Tokyo Institute of Technology

Feasibility Study on LFR by JNC/JAPC (1999-2006)

Phase I : Extraction of typical FR system concepts

•	Coolant	Pb, Pb-Bi
•	Size	Large, Medium, Small
•	Туре	Tank, Loop
•	Cooling	Natural Circulation, Forced Circulation

Phase II: Investigation of the concepts to bring out attractive properties

\blacklozenge	Coolant	Pb-Bi
\blacklozenge	Size	Medium
•	Туре	Tank
\blacklozenge	Cooling	Forced Circulation

JNC:	Japan Nuclear Cycle Development Institute
JAPC:	The Japan Atomic Power Company

LFR Concept Selected by JNC/JAPC

Fuel cladding temperature: Reduced from 650°C to 570°C

Plant Specification of LFR

Reactor Type	Forced Convection
Electric Power	750MWe
Thermal Power	1,980MWt
Primary Coolant Temperature	445°C/285°C
Primary Coolant Flow Rate	3.06 x 10 ⁵ Ton/h
Steam Temperature/Pressure	400°C/6MPa
Feed Water Temperature/Flow Rate	210°C/3,126 Ton/h
Cycle Efficiency	~ 38%
Burn Up (Average)	150000 MWd/t
Breeding Ratio	1.19 (Nitride Fuel)
Decay Heat Removal System	DRACS x 3 (Natural circulation)

Core Design

Туре	Two region homogeneous core
Refueling Interval	18 months
Number of Batches	6
Core Height	70 cm
Axial Blanket (Upper/Lower)	0/18 cm
Equivalent Core Diameter	443 cm
Number of Fuel Assemblies (Inner/Outer)	252/192
Radial Blanket	—
Number of Control Rods (Main/Backup)	24/7
Number of Radial Shielding materials	Pb-Bi 84, Zr-H 90

Proliferation Resistance

SFR/MOX/Wet Process/ Simple Pelet SFR/MOX/Oxide Electrolysis/ Vibrated Pelet SFR/Metal/Metal electrolysis/ Shashuts LFR/Nitride Fuel/Wet Process/ Simple Pelet GFR/Nitride Fuel/Wet process/ Coated Particle

R. Nakai, et al., "Multidimensional Evaluation on FR Cycle Systems," JNC Technical Review, No.24, (2004.11) pp.205-219.

R. Nakai, et al., "Multidimensional Evaluation on FR Cycle Systems," JNC Technical Review, No.24, (2004.11) pp.205-219.

Political Decision for Development of FBR Cycle System in Japan

1999 - 2006, JNC/JAPC : Feasibility Study on Commercial FR Cycle System

Phase I (1999-2000): Extraction of typical FR system concepts
Phase II (2001-2006): Investigation of the concepts to bring out
attractive properties

■ 2006, MEXT: Research and development policy of FR Cycle System

2006, AEC:

Basic policy on R&D FBR cycle technologies over the next decade ---

-- Selection of SFR and GFR

AEC: Japan Atomic Energy Commission

MEXT: Ministry of Education, Culture, Sports, Sci. and Tech.-Japan

JNC: Japan Nuclear Cycle Development Institute

JAPC: The Japan Atomic Power Company

JAEA: Japan Atomic Energy Agency

Main Reasons of Exclusion of LFR from Future Commercial Fast Reactor in Japan

According to Technical Summary of FR systems (2006)

Feasibility Study on Commercialized Fast Reactor Cycle Systems by JNC/JAPC

- 1. LFR has the potential to achieve core performance equivalent to SFR by applying nitride fuel, and meet all the design requirements.
- 2. Essential issues are
 - Corrosion of steel (fuel cladding)
 - Nitride fuel

Problems:

> No alternative technologies for these issues

International cooperation is unlikely for a breakthrough in the fundamental issues

>No country has taken leadership at the GIF project

Inherent and Passive Safety Features of LFR

Larger scattering cross section

 \rightarrow High neutron confinement performance, Better neutron economy, Large fuel *P*/*D*

- High performance of Pb-208 due to low capture cross section (See GLABAL 2011 Paper No.398761, Pb-208 is the final stable nucleus in Th decay chain)
- Pb-206 is low activation coolant (See ICONE-8385)
- Heavy nuclide mass → Low moderating power → Hard spectrum → Negative coolant void coefficient, Better MA burning capability
- **Low burn-up reactivity swing** → Long life core
- Higher boiling temperatures \rightarrow No coolant boiling in transient conditions

Inherent and Passive Safety Features of LFR

- Chemical inertness with water and air
 - \rightarrow No chemical reaction, No hydrogen generation and fire
- Lowest stored potential energy compared with water and sodium
 - → No release of chemical / mechanical energy, No vaporization and pressurization
- Heavy coolant \rightarrow Lift-up and dispersion of fuel pellets \rightarrow Avoid of re-critical accident

Additional Advantages of LFR

- Large scattering cross section of lead \rightarrow Good neutron confinement \rightarrow Smaller core size
- Large shielding effects for neutrons and γ -rays \rightarrow Reduction of thickness of reflectors and shields
- Large fuel $P/D \rightarrow$ High level of natural circulation capability
- No production of γ -ray emitters \rightarrow Much lower dose-rate around primary loops

 γ -ray emitter (Na-24 : half-life of 15 h) in SFR

• Heavy coolant \rightarrow Lift force of gas/steam bubbles \rightarrow Capability of coolant circulation without pumps

Drawbacks of LFR

- Production of alpha-ray emitter, Po-210 from neutron irradiation of Bi & Pb \rightarrow Need of Po-210 measure
- High solubility of Ni, Fe, etc. \rightarrow Need of material corrosion measure
- Very heavy coolant \rightarrow Restriction of reactor size / Need of seismic measure/ Erosion measure (<2m/s)
- Melting temperature of Pb $(327^{\circ}C) \rightarrow$ High operation temperature
- Bi resource is not abundant \rightarrow Selection of lead (Pb) rather than LBE (Pb-Bi)

Concept of LSPR studied in 1990s (LBE-cooled long-life Safe Simple Small Portable Proliferation resistant Reactor)

◆Long life core

• Small reactors are constructed in factories of the nuclear energy park,

Transported to the site, and deployed.
Sealed reactor vessel without being opened at the site.

•Excellent **proliferation resistance** in refueling

-At the end of the reactor life, it is **replaced** by a new one. The old one is **shipped** to the nuclear energy park.

◆Environment

-No radioactive waste left at the site. (Site is

free from waste problems.)

Long Life Core (Reactivity Swing)

Comparison of coolant void coefficient between SFR and LFR

Metallic fuel: lower than Nitride fuel *LBE coolant*: lower than Lead coolant 21

Distribution of Newtron Flux

Simplified and Economical LFR PBWFR (Pb-Bi-cooled direct contact boiling Water Fast Reactor) - Tokyo Tech.

To avoid corrosion and erosion, the components that contact lead alloy should be eliminated as much as possible.

Concern of corrosion --- Steam generator tubes (hot LBE)
Concern of erosion --- Impellers of primary pumps (10m/s)

PBWFR (cont'd)

 Elimination of SGs and primary pumps by direct injection of a feed water into hot LBE above core
 Injected feed water boils in a chimney

Steam bubbles drive coolant circulation

PBWFR: Plant systems and fuel handling

Main parameters of LSPR and PBWFR (Tokyo Tech.)

	LSPR-50	PBWFR-150
Power, Thermal/Electric, MW	150/53	450/150
Thermal efficiency, %	35	33
Core diameter/height, m	1.652/1.08	2.78/0.75
Fuel	U-Pu-10%Zr mettalic or U-Pu nitride	U-Pu Nitride
Fuel pin diameter, mm	10	12
P/D, Inner core/Outer core	1.12/1.18	1.3/1.3
Linear power density, W/cm	51.9 (Average)	363 (max.)
Pump type/unit number	Mechanical / 2	Gas lift /1
Temperature, inlet /outlet, °C	360/510	310/460
Coolant flow rate, t/h	12,300	73,970
Steam generator, Type/Unit number	Serpentine tube/2	Direct contact/1
Temperature, Feed water/Steam, °C	210/280	220/296
Steam pressure, MPa	6.47	7.0
Reactor vessel, diameter/height, m	5.2/15.2	4.69/19.8
Refueling interval, y	12	10

Tokyo Tech.-LSPR (50MWe)

Evaluation of Corrosion Resistance Based on Existing Steels by JNC/FZK

for corrosion resistance

12Cr steel 650°C, 2000h, C₀5x10⁻⁷wt%

LBE penetration

Choice of Cladding Temperature (570°C) Based on Correlation of Oxidation Rate Obtained for Existing Steels by JNC/FZK

(Limited conditions) ³¹

Techniques for Corrosion Resistance

Oxygen control in lead/LBE

Self-healing of oxide protection layer on material surface

Improvement of Materials

Existing steels containing high Cr

Addition of Si or Al to steels

■ Surface coating by Al alloy

Already reported in Russia, and studied in Japan, EU and U.S.A in 2006

In spite of the statement "International cooperation is *unlikely for a breakthrough in the fundamental issues*"

in JNC/ JAPC Report in 2006

Corrosion Resistance of Existing Steels in Flowing Condition Tokyo Institute of Technology, 1999-2006

Material	Contents	Temp. (°C)	Oxygen content (wt%)	Time (h)	Result
SUS316	18Cr14Ni2Mo	550	3.7x10 ⁻⁸	1000	Penetratio n
SCM420	1Cr0.2Mo	550	3.7x10 ⁻⁸	1000	Worst
F82H	8Cr2Mo2W	550	3.7x10 ⁻⁸	1000	Worse
NF616	9Cr0.5Mo2W	550	3.7x10 ⁻⁸	1000	Worse
ODS	12Cr2W	550	3.7x10 ⁻⁸	1000	Worse
HCM12A	12Cr2W	550	3.7x10 ⁻⁸	1000	Worse
STBA26	9Cr1Mo	550	3.7x10 ⁻⁸	1000	Better
HCM12	12Cr1Mo	550	3.7x10 ⁻⁸	1000	Best

Corrosion Resistance of Existing Steels *Containing Si or Al* in Flowing Condition Tokyo Institute of Technology, **1999-2006**

Material	Contents	Temp. (°C)	Oxygen content (wt%)	Time (h)	Result
SUS405	12Cr1Si	550	3.7x10 ⁻⁸	1000	Good
SUS430	16Cr0.6Si	550	3.7x10 ⁻⁸	1000	Good
SUH3	10Cr0.7M o2Si	550	1.7-3.7x10 ⁻⁸ 1x10 ⁻⁶	500-2000	Good
Recloy10	18Cr1Al	550	1.7x10 ⁻⁸ 1x10 ⁻⁶	500-2000	Good
NTKO4L	18Cr3Al	550	1.7x10 ⁻⁸ 1x10 ⁻⁶	500-2000	Good

Resin Layer Base metal NTK04L

Corrosion Resistance of ODS Steel *with Addition of AI* in Stagnant Condition JAEA,FZK, etc. 2009

Material	Addition	Flow/Sta gnant	Temp. (°C)	Oxygen content (wt%)	Time (h)	Result
13.7– 17.3Cr- ODS steel	3.5 wt% Al, wt%	Stagnant	550 <i>,</i> 650	10 ⁻⁸ , 10 ⁻⁶	5000	Good

•Addition of Al: Effective for corrosion resistance

- Addition of minor amount of Zr: Favorable influence
 To prevent ODS particles from combining with Al and coarsening
- Solely Increasing Cr concentration: Not effective

Corrosion Resistance of

Existing Steels *Containing Si or Al* in Stagnant Condition Tokyo Institute of Technology, 2010

Material	Contents	Temp. (°C)	Oxygen content (wt%)	Time (h)	Result
SUS430	16Cr0.6Si	700	5x10 ⁻⁶	1000	Penetration
STBA26	9Cr1Mo	700	6.8x10 ⁻⁷	1000	Penetration
Recloy10	18Cr1Al	700	5x10 ⁻⁶	1000	Penetration
NTK04L	18Cr3Al	700	5x10 ⁻⁶	1000	Penetration

Pb-Bi

30.0 μm SUS430 (18Cr-0.75Si)

Pb-Bi Resin penetration Recloy10

Recloy10 (17.7Cr-1Si-0.9Al)

700°C

STBA26 (9Cr-0.2Si)

Fe-Al Alloy Coating using Unbalanced Magnetron Sputtering Technique

Corrosion Resistance of

Existing Steels with Fe-Al Alloy Coating in Stagnant Condition Tokyo Institute of Technology, 2010

Material	Contents	Temp. (°C)	Oxygen content (wt%)	Time (h)	Result
STBA26	9Cr1Mo	700	6.8x10 ⁻⁷	1000	Good

Corrosion Resistance of

ODS Steels *with Addition of AI and AI-alloying surface Treatment* in Stagnant Condition JAEA,FZK, etc. 2009

Material	Addition	Flow/Sta gnant	Temp. (°C)	Oxygen content (wt%)	Time (h)	Result
9Cr-ODS steel	3.3-3.8wt% Al	Stagnant	650, 700	10 ⁻⁸ , 10 ⁻⁶	10000	Good

•Addition of Al: Effective for corrosion resistance

- Addition of minor amount of Zr or Hf
- •Al-alloying surface treatment by the GESA facility

Thank you for your kind attention!