LMFR Development: status and perspectives in the USA

Craig F. Smith
Research Professor
Naval Postgraduate School

Short Summary for meeting of GIF-LFR-PSSC April 16th, 2012

Pisa, Italy

Outline of comments

- Historical backdrop: LMFR's
- LFR Activities: current status
- Closing comments

US Fast Reactor: A Rich Historical Context

- **Clementine:** the first fast reactor, built by LANL in 1946. Pu-fueled, mercury-cooled, 25Wt power.
- **EBR-1:** the first reactor to generate electrical power, built in 1949-51 at Idaho Falls. NaK-cooled, 1.4 MWt, decommissioned in 1964. First breeder reactor.
- **Fermi-1:** 94MWe FBR prototype, built near Detroit in 1957, operated until 1972. Sodium cooled.
- **LAMPRE:** 1 MWt FR based on molten Pu fuel, sodium cooling, and reflector control, built at LANL in the 1957-61 time frame.
- **EBR-II:** sodium cooled 62 MWt reactor, built in Idaho as the IFR prototype in 1965; operated for 30 years.
- **SEFOR:** Experimental test reactor operated from 1969 to 1972 in Arkansas. MOX-fueled, Na-cooled, 20 MWt.
- FFTF: Built in 1978 in Washington State, 400 MWt Na-cooled test reactor.

Clementine 1946

> EBR-1 1951

Fermi-1 1957

> EBR-2 1965

SEFOR 1972

FFTF 1978

LFR Activities in the US

LFR activities in the US have been relatively limited in the past year+

Continuing (though mainly small) efforts include:

- Work at US national laboratories
- University efforts
- Some US industrial efforts
- SSTAR as a GIF reference concept for a small, transportable LFR

The Small Secure Transportable Autonomous Reactor (SSTAR)

SSTAR is a small natural circulation fast reactor of 20 MWe/45 MWt, that can be scaled up to 180 MWe/400 MWt.

The compact active core is removed by the supplier as a single cassette and replaced by a fresh core.

Key technical attributes include the use of lead (Pb) as coolant and a long-life sealed core in a small, modular system.

SSTAR Reactor Core Parameters

Coolant	Lead
Fuel	Transuranic Nitride, Enriched in N ₁₅
Enrichment, %	5 Radial Zones, TRU/HM 1.7/3.5/ 17.2/19.0/20.7
Core Lifetime, years	30
Core Inlet/Outlet Temperature, °C	420/567
Coolant circulation	Natural convection
Average (Peak) Discharge Burnup, MWd/Kg HM	81(131)

Peak Fuel Temperature, °C	841
Peak Cladding Temperature, °C	650
Fuel Pin Diameter, Cm	2.50
Fuel/Coolant Volume Fractions	0.45/0.35
Active Core Dimensions, Height/Diameter, m	0.976/1.22
Power conversion	S-CO ₂ Brayton cycle

7

Continuing LFR Activities in the US

Efforts at US national labs

- LLNL support to DOE's Advanced Reactor program
- ANL completion of work on the 'SUPERSTAR' concept, an extension of the SSTAR concept
- LANL work with MIT and with UC Berkeley on material testing and performance.

Continuing LFR Activities in the US

- University efforts
 - MIT work on Functionally Graded Composite materials
 - UC Berkeley material science and LFR design work
 - UNLV operation of an LBE loop

Continuing LFR Activities in the US

Some limited industrial efforts in the US

- Hyperion Power Group (HPG) (now Gen-4 Energy)

Concluding comments

- In spite of a rich history in LMFR development, current US efforts are limited
- Nevertheless, there is some interest in LFR technology, mainly as a backup option to the SFR
- A small but dedicated group of researchers are continuing to maintain options through national lab, university and industry projects.